
Blueprint for a Modern High-Performance Machine Learning
System
I. Executive Summary: Blueprint for a Modern ML System

The design of a modern, large-scale Machine Learning (ML) system
demands a holistic approach, where compute, networking, and
storage are not merely individual components but deeply
interconnected elements working in synergy. Achieving optimal
performance, scalability, and efficiency for demanding ML workloads
hinges on this integrated design philosophy. This report outlines a
blueprint for such a system, emphasizing key technology choices
that address the current and emerging needs of advanced AI
applications. These choices include high-performance Ethernet with
RDMA over Converged Ethernet (RoCEv2) or InfiniBand for the
network fabric, a tiered storage architecture featuring high-speed
parallel file systems for active training data and scalable object
storage for vast datasets, powerful GPU clusters equipped with
advanced interconnects like NVIDIA NVLink, and a robust MLOps
framework to ensure reproducibility and operational efficiency.

The core challenge in contemporary ML systems extends beyond the
raw power of individual components. While cutting-edge GPUs
provide immense computational capability, their effective utilization
is often constrained by the ability of the network to deliver data and
the storage system to serve it at the required pace.1 Scalability, the
ability to grow the system to handle larger models and datasets;
reproducibility, the capacity to consistently replicate experimental
results and model behavior; and efficiency, optimizing resource use
and minimizing training times, are paramount design goals.3

A critical understanding is that optimizing components in isolation

yields suboptimal system-level outcomes. For instance, a
state-of-the-art GPU cluster will remain underutilized if the network
bandwidth is insufficient or if the storage Input/Output Operations
Per Second (IOPS) create a bottleneck.5 This necessitates a design
where budget allocation and engineering efforts are distributed
across all critical subsystems—compute, network, and
storage—rather than being disproportionately focused on a single
area like GPU acquisition. Furthermore, the modern ML
infrastructure is increasingly software-defined. Beyond the physical
hardware, the selection of workload managers, MLOps tools, and
data orchestration layers significantly shapes the system's
capabilities, operational agility, and overall effectiveness.6 Building
and operating such sophisticated systems requires a
multidisciplinary team with expertise spanning hardware
engineering, distributed software systems, and MLOps practices.

II. Core Compute Infrastructure: GPU Clusters for Intensive ML

The heart of any large-scale ML system is its compute infrastructure,
predominantly comprising clusters of Graphics Processing Units
(GPUs) tailored for the parallel processing demands of ML
algorithms, particularly deep learning.

A. GPU Selection and Server Configuration

The selection of GPUs is a foundational decision, directly impacting
the system's performance, cost, and ability to handle specific ML
workloads. Leading GPU architectures for ML include NVIDIA's H100,
H200, and the newer Blackwell series, alongside AMD's MI300X. Key
evaluation criteria include raw compute power (measured in TFLOPS
for various precisions like FP16, BF16, FP8, and INT8), on-chip
memory capacity (High Bandwidth Memory - HBM), memory

bandwidth, and power consumption (Thermal Design Power - TDP).10

For instance, the NVIDIA H100 GPU offers 80GB of HBM2e or HBM3
memory, utilizes PCIe Gen5 for host connectivity, and features
configurable power management modes to balance performance
and energy use.10 Cloud providers like Google Cloud offer A3 virtual
machines equipped with NVIDIA H100 80GB GPUs.11 In comparison,
the AMD MI300X boasts a significant 192GB of HBM3 memory,
offering superior memory capacity and bandwidth over the H100
80GB, making it particularly well-suited for training very large
models that might otherwise require complex model parallelism
strategies.12 Optimizing workloads on MI300X can involve specific
configurations, such as adjusting gpu-memory-utilization,
max-num-seqs for batching, and selecting appropriate data types
(dtype) when using frameworks like vLLM.13

Server configurations must be carefully matched to the chosen
GPUs. This includes selecting between PCIe and SXM form factors
(with SXM typically offering higher GPU-to-GPU bandwidth within a
multi-GPU baseboard), appropriate CPUs (e.g., Intel Sapphire
Rapids, AMD Epyc Genoa 6), sufficient system RAM, and robust
power delivery and cooling systems within the server chassis to
handle the high TDP of modern GPUs.14

The trend towards increasingly large models, especially Large
Language Models (LLMs), places GPU memory capacity and
bandwidth at the forefront of selection criteria.6 GPUs with larger
memory, like the AMD MI300X, can reduce the necessity for
extensive model parallelism across numerous GPUs with smaller
memory footprints. This simplification of distributed training setups
can, in turn, lessen inter-node communication overhead and

potentially improve the total cost of ownership (TCO) by allowing
complex models to fit onto fewer nodes or even a single, powerful
node. This shifts the design focus from solely raw TFLOPS to TFLOPS
accessible per model parameter, a metric intrinsically linked to
available GPU memory.

While raw hardware specifications are crucial, the maturity and
breadth of the supporting software ecosystem are equally important.
NVIDIA's CUDA platform, along with its extensive suite of libraries
(e.g., Magnum IO, NCCL, cuDNN, TensorRT 15), provides a highly
developed environment for ML development and deployment. AMD
is actively building its ROCm ecosystem and collaborating with
communities like vLLM to enhance support.12 However, the
established nature of NVIDIA's ecosystem often translates to a
smoother development experience, wider framework compatibility,
and more readily available pre-optimized solutions, which can
accelerate time-to-solution and simplify troubleshooting in
production environments. Thus, the GPU selection process involves a
careful assessment of not just hardware capabilities but also the
associated software stack and ecosystem support.

Table 1: GPU Model Comparison for ML Workloads

Feature NVIDIA
H100 80GB
(SXM5)

NVIDIA
H200
141GB
(SXM)

AMD
MI300X
192GB

NVIDIA
Blackwell
B200
(Projected)

Architecture Hopper Hopper CDNA 3 Blackwell

FP16/BF16
TFLOPS

~1979
(dense)

~1979
(dense)

~1600-1900
+

Significantly
Higher

FP8 TFLOPS ~3958
(dense)

~3958
(dense)

~3200-380
0+

Significantly
Higher

HBM
Capacity

80 GB HBM3 141 GB
HBM3e

192 GB
HBM3

Up to 192GB
HBM3e

HBM
Bandwidth

3.35 TB/s 4.8 TB/s 5.3 TB/s Up to 8 TB/s

Interconnect NVLink 4.0
(18 links)

NVLink 4.0
(18 links)

Infinity
Fabric

NVLink 5.0
(18 links)

Link
Bandwidth
(Total)

900 GB/s 900 GB/s 896 GB/s
(IFL)

1.8 TB/s

Power (TDP) Up to 700W Up to
1000W

750W Up to
1200W

Form Factor SXM5 SXM OAM SXM / Server
Board

Note: Blackwell B200 specifications are based on publicly
announced information and may be subject to change. AMD MI300X
TFLOPS can vary based on specific configurations and sparsity.

B. Intra-Node and Inter-Node GPU Connectivity (NVLink, NVSwitch, and

alternatives)

For multi-GPU training, particularly distributed deep learning,
high-speed, direct GPU-to-GPU communication is paramount to
minimize latency and maximize bandwidth for operations like
gradient synchronization and model parameter sharing.

NVIDIA's NVLink technology is a key enabler here. The fifth
generation of NVLink, featured in the Blackwell architecture, offers
up to 1.8 TB/s of bidirectional bandwidth per GPU, facilitated by 18
links each operating at 100 GB/s.17 This represents a twofold increase
over the previous generation and is more than 14 times the
bandwidth of PCIe Gen5.17 To scale this further, NVIDIA NVSwitch
chips connect multiple NVLink interfaces, enabling all-to-all GPU
communication at full NVLink speed, not only within a single server
but also potentially between servers in a tightly coupled pod.17 For
example, the NVSwitch 3 chip integrates 64 NVLink4 ports.18 NVIDIA
has also productized this technology into physical NVLink Switches,
which can connect multiple GPU servers to form an "NVLink
Network," effectively creating a high-speed fabric dedicated to GPU
communication across hosts.18 Platforms like the NVIDIA GB200 or
GB300 NVL72 systems, which can link up to 72 GPUs, heavily rely on
this advanced NVLink and NVSwitch infrastructure to function as a
cohesive, powerful compute unit.17 AMD offers its Infinity Fabric and
Infinity Links for inter-GPU communication within its own ecosystem,
providing a competing solution for high-bandwidth connectivity,
though detailed specifications for the latest generations were less
prominent in the provided materials.

NVIDIA's substantial investment in NVLink and NVSwitch technology
has resulted in a highly integrated, high-performance ecosystem for

multi-GPU servers and pods, such as their DGX, HGX, and the newer
NVL72 systems.17 This provides a potent "scale-up" solution, allowing
for extremely fast communication within a pod of GPUs before
needing to "scale-out" over a traditional network fabric like Ethernet
or InfiniBand. For certain model parallelism strategies (e.g., tensor or
pipeline parallelism), this localized high-bandwidth, low-latency
interconnect can be particularly advantageous, simplifying aspects
of distributed training by making inter-GPU communication within
the pod exceptionally efficient. The NVLink Switch, for example, can
enable 130TB/s of GPU bandwidth in a single GB300 NVL72 system,
supporting up to nine times the GPU count of a typical 8-GPU
system for large model parallelism, effectively creating a
"data-center-sized GPU".17

This evolution is leading to the concept of "rack-scale GPUs."
Technologies like the external NVLink Switch 18 are blurring the
traditional boundaries between individual servers. They create larger,
more cohesive computational units at the rack or multi-rack level,
where up to 576 GPUs can be interconnected in a non-blocking
fabric via NVLink.17 This has significant implications for network
design within the AI cluster. For these tightly coupled GPU pods, the
primary high-performance interconnect is NVLink, handling the most
intense, fine-grained communication. The external network fabric,
such as Ethernet or InfiniBand, then serves to connect these
powerful "rack-scale GPU" pods to each other and to the storage
infrastructure. This implies a hierarchical networking approach, with
specialized networks for different communication patterns and
distances.

C. Cluster Management and Orchestration (Kubernetes, Slurm, Ray – selection
criteria)

Managing and orchestrating workloads across a large GPU cluster
requires sophisticated software. Key players in this domain include
Kubernetes, Slurm, and Ray, each with distinct strengths.

●​ Kubernetes: Has become a de facto standard for container
orchestration. It can manage GPU resources, scale applications,
and offers features like node labeling for different GPU types
and mechanisms for specifying GPU resource requests in pod
definitions.6 Google Kubernetes Engine (GKE), for example,
provides managed Kubernetes with GPU support, including
features like time-sharing and Multi-Instance GPUs (MIG) for
partitioning physical GPUs into smaller, isolated instances.19
However, for specialized GenAI workloads involving complex job
queuing and scheduling, Kubernetes often requires
supplementary tools or operators.6

●​ Slurm (Simple Linux Utility for Resource Management): A
widely adopted workload manager in High-Performance
Computing (HPC) environments, Slurm excels at automating task
scheduling, managing batch processing queues, and optimizing
cluster resource utilization.6 It manages GPUs as Generic
Resources (GRES) and utilizes environment variables like
CUDA_VISIBLE_DEVICES and CUDA_DEVICE_ORDER for GPU
allocation and visibility.21

●​ Ray: An open-source framework designed for scaling Python
applications, particularly those in AI and ML.6 Ray provides a
suite of libraries tailored for ML tasks, including Ray Train for
distributed model training, Ray Tune for hyperparameter
optimization, Ray Data for scalable data processing, and Ray
Serve for model deployment.6 Ray can be deployed on various
infrastructures, including on top of Spark clusters (as seen with

Databricks 23) or in a more infrastructure-agnostic manner using
Docker containers.22

The selection of an orchestrator depends on several factors: the
existing expertise within the team, the nature of the ML workloads
(e.g., batch training, interactive development, model serving),
integration with existing infrastructure, the desired level of
abstraction from the underlying hardware, and compatibility with
other MLOps tools.

A notable trend is the convergence and specialization of these
orchestration tools. While Kubernetes provides a robust foundational
layer for container and resource management, specialized
frameworks like Slurm (for HPC-style batch jobs) and Ray (for
distributed Python/ML workloads) offer functionalities more finely
tuned to specific ML tasks. Consequently, integrations such as
Soperator (a Kubernetes operator for Slurm, enabling Slurm clusters
to run on Kubernetes 6) or deploying Ray clusters on Kubernetes are
becoming common. This layered approach allows organizations to
leverage the general-purpose infrastructure management
capabilities of Kubernetes while benefiting from the domain-specific
scheduling features and rich ML ecosystems offered by tools like
Slurm or Ray.

The choice of orchestrator also has a direct bearing on the
integration and workflow of the broader MLOps toolkit. For instance,
Kubeflow, with its components like Kubeflow Pipelines, is inherently
Kubernetes-native and designed for orchestrating ML workflows on
Kubernetes.24 MLflow, on the other hand, offers greater flexibility,
capable of integrating with various backend stores and artifact
repositories, and can be used with different orchestrators.8 Ray

comes with its own ecosystem of tools like Ray Tune and Ray Serve,
which are naturally integrated within Ray applications.22 Therefore,
the decision regarding the primary orchestrator is not merely about
job execution but significantly shapes the entire MLOps landscape,
influencing how experiments are tracked, data and models are
versioned, and models are ultimately deployed.

III. High-Performance Networking Fabric: The Data Superhighway

The network fabric is the critical data superhighway connecting GPU
clusters, storage systems, and preprocessing nodes. For large-scale
ML, particularly distributed training, the network's characteristics
directly impact overall system performance and efficiency.

A. Defining Network Requirements for Large-Scale ML (Bandwidth, Latency,
Losslessness, Jitter)

Modern AI applications, especially those involving distributed
training of large models, impose stringent requirements on the
network.5 Key performance indicators include:

●​ Bandwidth: The data transfer rate, typically ranging from
100Gbps to 400Gbps, and evolving towards 800Gbps and
beyond per link.5 High bandwidth is essential for moving large
datasets from storage to compute nodes and for synchronizing
large model parameters and gradients between GPUs during
distributed training.

●​ Latency: The delay in data transmission. Extremely low latency
is crucial for synchronous operations in distributed training, such
as the aggregation of gradients, where delays can cause GPUs
to idle, significantly slowing down the training process.
Technologies like RoCE v2 aim to reduce latency by enabling
direct memory access and bypassing the operating system and

CPU.27 InfiniBand is also renowned for its inherently low latency
characteristics.28

●​ Losslessness: The absence of packet loss during transmission.
Packet loss leads to retransmissions, which can stall training
computations and severely degrade performance. Lossless
operation is typically achieved in Ethernet networks through
mechanisms like Ethernet Flow Control or, more commonly for
RoCE, Priority Flow Control (PFC) combined with Explicit
Congestion Notification (ECN).29 Arista's EOS, for example,
provides tools to achieve a highly reliable, lossless network.5
InfiniBand, by contrast, employs a credit-based flow control
mechanism that inherently ensures lossless communication
between connected devices.29

●​ Jitter: The variation in packet arrival times. Consistent and
predictable packet delivery (low jitter) is important for
maintaining stable performance in tightly synchronized
distributed computations. The Ultra Ethernet Consortium (UEC)
identifies low jitter as a key design goal for future AI networks.30

Achieving a truly "lossless" network, especially for RoCEv2
deployments, is a system-level challenge, not merely a feature of the
switch hardware. It necessitates meticulous end-to-end
configuration and tuning, encompassing NICs, switches, and
sophisticated congestion control mechanisms.5 This complexity is a
trade-off for leveraging the ubiquity and broader ecosystem of
Ethernet. InfiniBand's credit-based flow control, in contrast, offers a
more inherently lossless fabric.

Furthermore, the role of the network is evolving beyond that of a
passive data conduit. Emerging technologies like NVIDIA SHARP
(Scalable Hierarchical Aggregation and Reduction Protocol), which

can be integrated into NVSwitch chips 18 and is part of the Magnum
IO software stack 16, enable "in-network computing." With SHARP,
collective operations like reductions (summing gradients from
multiple GPUs) can be performed within the network fabric itself as
data transits. This offloads computation from the GPUs or CPUs,
potentially significantly accelerating communication patterns
common in distributed training. This trend positions the network as
an active participant in the computation, making the switch more
than just a data forwarder—it becomes an accelerator.

B. Key Networking Technologies: Ethernet with RoCE v2, InfiniBand, and the
emerging Ultra Ethernet Consortium (UEC)

Several key technologies compete to provide the networking
backbone for ML clusters:

●​ Ethernet with RoCE v2 (RDMA over Converged Ethernet):
This approach leverages standard Ethernet infrastructure, which
is widely deployed and understood. RoCE v2 is a routable
protocol, typically operating over UDP/IP on port 4791.29 It
enables Remote Direct Memory Access (RDMA), allowing
systems (e.g., storage servers and GPU nodes, or GPU nodes
amongst themselves) to exchange data directly between their
memories, bypassing the host CPU and operating system
networking stack. This significantly reduces latency and CPU
overhead.27 For example, Google Cloud's A3 and A4 VMs utilize
RoCE v2 to achieve 1.6 Tbps to 3.2 Tbps of inter-node
GPU-to-GPU traffic.27 Network vendors like Arista provide
switches (e.g., their Etherlink portfolio) that support RoCE and
the necessary features for building lossless Ethernet fabrics,
such as PFC and ECN.5

●​ InfiniBand: A high-throughput, very low-latency interconnect

technology that has long been favored in HPC environments and
has seen widespread adoption in large-scale AI clusters.28
InfiniBand inherently supports RDMA and uses a credit-based
flow control mechanism, which guarantees lossless
communication without the complex configuration often
required for lossless Ethernet.29 NVIDIA's Quantum-2 InfiniBand
platform, for instance, offers switches with aggregate
throughputs of 51.2 Tb/s and 400 Gb/s ports.32 Historically,
InfiniBand switches have demonstrated lower port-to-port
latencies compared to their Ethernet counterparts.29 As of early
2024, a significant majority, around 90%, of AI system
deployments were reported to be using InfiniBand.32

●​ Ultra Ethernet Consortium (UEC): This is an industry initiative
aimed at evolving and enhancing Ethernet specifically for the
demands of AI and ML workloads.30 The UEC's goal is to deliver
an Ethernet-based solution with improved characteristics in
terms of low latency, high bandwidth, minimal jitter, and
enhanced reliability. The proposed UEC specifications cover
multiple layers, including a physical layer compatible with IEEE
802.3 Ethernet, a link layer introducing Link Level Retry (LLR) for
lossless transmission (potentially without relying on PFC), Packet
Rate Improvement (PRI) through header compression, and an
advanced transport layer featuring new congestion control
mechanisms and support for out-of-order delivery.33 Companies
like Arista are actively involved and are building products that
will be compatible with UEC standards.5

The choice between these technologies involves navigating a
dynamic landscape. InfiniBand currently holds a strong position in AI
clusters due to its mature RDMA implementation, inherently low

latency, and proven lossless nature.32 However, Ethernet, augmented
by RoCEv2 and the forthcoming UEC enhancements, is rapidly
evolving to challenge this dominance. Ethernet offers the allure of
leveraging a ubiquitous, well-understood technology base,
potentially broader vendor choice, and potentially lower costs in
some scenarios.5 Hyperscalers, for example, often prefer Ethernet
due to its openness and ability to handle diverse workloads beyond
just AI.32 NVIDIA itself is a proponent of "lossless Ethernet" through
its Spectrum-X platform.32 The decision for a new ML cluster build
becomes strategic: investing in the established performance and
relative simplicity of InfiniBand or opting for the evolving
Ethernet/UEC path, which promises future advancements within a
more common data center fabric.

Regardless of the specific fabric choice (InfiniBand or
Ethernet/RoCEv2), RDMA capability is a fundamental and
non-negotiable requirement for any high-performance ML network.27
The ability to bypass CPU and OS overhead for data transfers
between GPUs and between GPUs and storage is critical for
achieving the efficiency and speed demanded by large-scale
distributed training.

Table 2: Networking Technology Comparison for ML Clusters

Feature Ethernet +
RoCEv2

InfiniBand Ultra Ethernet
(Projected)

Typical
Bandwidth/Port

100G, 200G,
400G, 800G+

100G (HDR100),
200G (HDR),

400G, 800G,
1.6T+

400G (NDR),
800G (XDR)

Latency
Characteristics

Low (with
RDMA), higher
than InfiniBand
typically

Very Low Very Low (target
similar/better
than InfiniBand)

Lossless
Mechanism

PFC, ECN,
DCB/DCB-CX
(complex
configuration) 29

Credit-based
flow control
(inherent) 29

UEC Transport
(e.g., LLR) 33

RDMA Support Yes (RoCEv2) 27 Yes (Native) 28 Yes (Enhanced
Ethernet RDMA)

Ecosystem
Maturity

Very Mature
(Ethernet),
Growing (RoCE
for AI)

Mature (HPC &
AI)

Emerging

Cost
Considerations

Potentially lower,
wider vendor
base

Typically higher
cost per port

Aims for
Ethernet
cost-effectivene
ss

Key AI/ML Use
Cases

General DC,
AI/ML clusters,
Hyperscalers 32

Dedicated AI/ML
clusters, HPC 32

Future AI/ML
clusters

C. Network Topologies for Scalability and Performance (e.g., Fat-Tree, Clos,
Dragonfly)

The physical and logical arrangement of network switches and
links—the network topology—is crucial for ensuring scalability, high
performance, and fault tolerance in large GPU clusters.

●​ Fat-Tree (and its common implementation, Spine-Leaf, a
type of Clos network): This is the most commonly adopted
topology for modern data centers and GPU clusters due to its
excellent scalability, potential for non-blocking or low-blocking
performance, and relatively simple routing.34

○​ A two-tier Fat-Tree (Leaf-Spine) architecture is typically
used for smaller to medium-sized clusters. In this setup,
servers (leaf nodes) connect to a set of leaf switches. Each
leaf switch then connects to every spine switch in the upper
tier. This provides multiple paths and good aggregate
bandwidth.34

○​ For larger clusters, a three-tier Fat-Tree
(Leaf-Spine-Core) architecture may be employed, adding
another layer of core switches to interconnect multiple
spine-leaf pods.34

○​ The number of GPUs a Fat-Tree network can support in a
non-blocking fashion is directly related to the port count
(radix, P) of the switches used. For a two-tier non-blocking
network where leaf switches use P/2 ports downwards to
servers and P/2 ports upwards to spine switches, a maximum
of P leaf switches can be supported, leading to a total of
P×(P/2)=P2/2 server ports (assuming one port per
server/GPU for simplicity).34 For example, using 40-port
switches, a two-tier Fat-Tree can support up to 402/2=800
GPU connections. With 128-port switches, this scales to
1282/2=8192 GPUs.34 A three-tier non-blocking Fat-Tree can

support up to P3/4 server ports.34

○​ The Clos network, named after Charles Clos, is the general
theoretical underpinning for such multi-stage switching
networks.37 A key property is that a strictly non-blocking Clos
network can be achieved if the number of middle-stage
switches (m) is greater than or equal to 2n−1, where n is the
number of inputs to each ingress switch.37 Spine-leaf
architectures are practical implementations of Clos
principles, designed to minimize the number of hops
between any two endpoints, thus ensuring high-bandwidth
and low-latency communication ideal for data centers and AI
clusters.36

●​ Dragonfly: This topology, popularized by Cray in their
supercomputers (e.g., XC and EX series), employs a hierarchical
structure of switch groups.38 Within each group (often
corresponding to a cabinet or set of cabinets), switches are
typically connected in an all-to-all manner. These groups are
then interconnected, often with a reduced (tapered) number of
links compared to the intra-group connectivity, forming a global
network.38 Dragonfly topologies are designed to offer very high
bisection bandwidth, which is a measure of the network's
capacity for all-to-all communication, and can provide lower
average latency compared to Fat-Trees for certain
communication patterns, especially in very large systems.39 They
are particularly effective for physically dense node
configurations, as more connections can be made with shorter,
less expensive cables within a group.38 However, Dragonfly
networks can be more complex to design, cable, and manage
than Fat-Trees, and their benefits might diminish if the physical
density of nodes is low, requiring more optical connections.38

The choice of topology involves a trade-off. For many enterprise and
research AI clusters, a well-designed Fat-Tree/Clos network
(typically spine-leaf) provides a good balance of predictable
performance, scalability, and manageability.34 For extremely
large-scale systems, such as those found in national
supercomputing centers or at hyperscalers with workloads
dominated by intense all-to-all communication, a Dragonfly topology
might be considered for its potential advantages in bisection
bandwidth, though at the cost of increased complexity.38

A critical factor influencing the scale and cost-effectiveness of any
chosen topology is the radix (number of ports) of the network
switches. Higher-radix switches allow for the construction of larger
non-blocking or low-blocking fabrics with fewer switching layers.34
For example, as shown by the formulas for Fat-Tree capacity, a
switch with 64 ports can support significantly more endpoints in a
two-tier non-blocking fabric than a 32-port switch, potentially
obviating the need for a more complex and costly three-tier
topology for a given cluster size. The availability of very high-radix
spine switches, like the Arista 7800R4 AI Spine with 576 ports of
800G 5, enables the creation of very large, efficient single-switch
clusters (for smaller deployments) or forms the core of massive
multi-tier networks. Investing in higher-radix switches can, therefore,
simplify network design, reduce the number of hops, decrease
overall latency, and potentially lower the total cost of the network
infrastructure.

IV. Scalable and Tiered Storage Architecture for ML Data
Lifecycle

Machine learning systems generate and consume vast quantities of

data throughout their lifecycle, from raw data ingestion to model
training, checkpointing, and artifact archiving. An effective storage
architecture must balance performance, capacity, and cost, typically
through a tiered approach.40 Key characteristics for ML storage
include scalability to handle growing data volumes, high availability
to ensure uninterrupted access, robust security mechanisms, and
performance tailored to different stages of the ML pipeline,
encompassing both high throughput for large sequential
reads/writes and low latency for metadata operations and small
random accesses.1

A. Overall Storage Strategy: Tiers (Hot, Warm, Cold) and Data Placement

A multi-tiered storage strategy is essential for managing the diverse
requirements of ML workloads:

●​ Hot Tier: This tier houses data requiring the highest
performance, such as active training datasets, frequently
accessed model checkpoints, and temporary scratch space.
Technologies typically include local NVMe SSDs on compute
nodes or high-performance parallel file systems. The primary
focus is on minimizing latency and maximizing throughput to
keep GPUs fed with data.1

●​ Warm Tier: This tier provides scalable storage for data that is
accessed less frequently but still needs to be readily available.
Examples include larger, less active portions of training datasets,
archived model artifacts, and historical experiment data.
Solutions might include general-purpose distributed file systems
or object storage systems, often augmented with caching layers
to improve access times. This tier balances performance with
cost-effectiveness.

●​ Cold Tier: This is the most cost-effective tier, designed for

long-term archival of raw data, older model versions, logs, and
other data that is rarely accessed. Cloud-based archival
services like Amazon S3 Glacier or Azure Archive Storage are
common choices.

Data placement across these tiers should ideally be dynamic and
automated. As dataset sizes explode into petabytes 6, manual
management becomes infeasible. Intelligent tiering, driven by
policies based on access frequency, last modification time, data size,
or even predictive models using machine learning itself, is crucial for
ensuring that data resides on the most appropriate storage class.40
This optimizes both performance (by keeping active data on fast
tiers) and cost (by moving inactive data to cheaper tiers). Such
automated tiering is becoming a key feature of modern storage
solutions designed for large-scale data environments.

The storage architecture must support the entire data lifecycle
seamlessly. This includes the initial ingestion of raw data,
preprocessing and transformation stages, the iterative process of
model training with frequent checkpointing, storage of the final
trained model artifacts, and eventual archival of data and models.
Each of these stages imposes different I/O patterns and
performance demands on the storage system.1 For example, raw
data might initially land on scalable object storage 1, preprocessing
might leverage a distributed file system or local scratch space 42,
training requires high, sustained throughput from a parallel file
system 44, model checkpoints need fast write capabilities 46, and
model artifacts require versioned and easily accessible storage.8 This
implies that the storage architecture is not a monolithic entity but
rather a collection of specialized systems managed cohesively to
serve the end-to-end ML workflow.

B. High-Performance File Systems for Training Data (e.g., Lustre, BeeGFS, IBM
Spectrum Scale)

For the hot tier, particularly for feeding large datasets to GPU
clusters during training, parallel file systems are indispensable.
These systems are architected to provide high-throughput,
low-latency, and highly concurrent access to massive datasets,
distributing data and I/O operations across multiple storage nodes
and servers.1

●​ Lustre: A widely deployed open-source parallel file system,
particularly prevalent in HPC and increasingly in large-scale LLM
training environments. Lustre can scale to petabytes of capacity
and deliver aggregate throughput in the terabytes per second
range.48 Managed cloud offerings, such as Google Cloud
Managed Lustre (based on DDN EXAScaler technology), provide
performance tiers like 1000 MB/s per Terabyte (TiB) of
provisioned capacity.44 Amazon FSx for Lustre is another popular
managed service, which notably supports integration with
Elastic Fabric Adapter (EFA) and NVIDIA GPUDirect Storage
(GDS). This integration allows FSx for Lustre to deliver up to
1200 Gbps of throughput per client instance to compatible EC2
GPU instances, significantly accelerating data access for
training.49

●​ BeeGFS: An open-source parallel file system known for its ease
of deployment and linear scalability in both performance and
capacity.51 It is well-suited for ML and AI workloads that demand
high data throughput. A notable deployment at UCSB
demonstrated over 13 GB/s of performance.51 BeeGFS also offers
a feature called BeeOND (BeeGFS On Demand), which allows for
the creation of temporary, high-performance file system

instances on the local SSDs of compute nodes, serving as a
burst buffer for I/O-intensive jobs.51

●​ IBM Spectrum Scale (formerly GPFS): A robust,
software-defined storage solution providing both file and object
access through its massively parallel file system.45 Spectrum
Scale is designed for high-performance workloads and supports
NVIDIA GPUDirect Storage, enabling a direct data path between
GPU memory and storage over InfiniBand or RoCE networks.
This direct path allows data to be read from or written directly to
an NSD (Network Shared Disk) server's pagepool and
transferred to the GPU buffer of client nodes via RDMA,
bypassing the CPU.45 It is used in demanding environments like
the IBM Vela AI supercomputer and can scale to thousands of
nodes.45

A critical feature for modern parallel file systems serving ML training
workloads is their integration with NVIDIA GPUDirect Storage
(GDS).56 The ability of Lustre 49, IBM Spectrum Scale 54, and other
parallel file systems 58 to facilitate direct data transfers to GPU
memory significantly reduces CPU overhead and data access
latency, which is becoming a standard requirement for achieving
optimal training performance. This capability heavily influences the
selection of a parallel file system, placing pressure on vendors to
offer robust GDS implementations.

The choice of a specific parallel file system can also be influenced by
factors such as cloud provider offerings and existing institutional
expertise. Managed services like Google Cloud Managed Lustre 44 or
AWS FSx for Lustre 49 significantly lower the operational burden of
deploying and maintaining these complex systems, making them
attractive for cloud-native ML initiatives. Conversely, organizations

with established HPC infrastructure may already possess deep
expertise in Lustre, BeeGFS, or Spectrum Scale, guiding their
choices for new ML cluster deployments based on existing skill sets,
vendor relationships, and specific performance or feature
requirements. Thus, the "best" parallel file system is
context-dependent.

Table 3: Parallel File System Comparison for ML Training

Feature Lustre BeeGFS IBM Spectrum
Scale (GPFS)

Architecture
Highlights

Distributed
metadata (MDS)
& object storage
(OSS) servers 48

Distributed
metadata &
storage servers;
client-side
striping 51

Shared-disk
cluster file
system; NSDs;
File & Object
access 45

Typical
Throughput

TBs/sec
(aggregate) 48;
1000 MB/s/TiB
(managed
services) 44

Tens of GBs/sec
to TBs/sec
(aggregate) 51

TBs/sec
(aggregate with
multiple nodes)
53

Latency
Characteristics

Low for large
I/O; metadata
can be a
bottleneck if not
scaled

Low latency,
good for mixed
I/O

Low latency,
optimized for
parallel I/O

Scalability
(Capacity/Nodes
)

Petabytes;
thousands of
clients 48

Petabytes;
thousands of
nodes 51

Exabytes;
thousands of
nodes 53

GPUDirect
Storage Support

Yes (e.g., AWS
FSx for Lustre
with EFA/GDS 49)

Yes (via
GDS-compatible
underlying block
devices & client
integration)

Yes (Direct
RDMA from NSD
server pagepool
to GPU buffer) 54

Key ML/HPC Use
Cases

LLM Training,
HPC simulations,
Genomics 48

AI/ML, Deep
Learning,
Lifesciences,
HPC 51

AI, HPC,
Analytics, Global
Data Platforms 45

Management
Model

Open Source;
Managed Cloud
Services (AWS,
GCP, Oracle) 44

Open Source;
Commercial
Support
Available 51

Commercial
Software;
Appliance
options (Storage
Scale System) 53

C. Object Storage for Raw Datasets, Archives, and Large Artifacts (e.g.,
S3-compatible with caching layers like Alluxio/JuiceFS)

Object storage systems, such as Amazon S3, Azure Blob Storage,
Google Cloud Storage, and S3-compatible on-premises solutions
like MinIO, have become the cornerstone for storing vast quantities
of unstructured data in ML environments.1 Their inherent scalability
(virtually unlimited capacity), durability, and cost-effectiveness make
them ideal for building data lakes that house raw training datasets,
intermediate processed data, large model artifacts, and long-term
archives.60 The S3 API has emerged as the de-facto industry

standard for object storage interaction.60

While object storage excels as a primary data lake foundation due to
its scalability and cost profile 61, its native performance
characteristics (particularly latency and sometimes throughput for
highly concurrent access patterns) are often insufficient for direct,
high-performance feeding of GPUs during model training.62 This
performance gap has led to the widespread adoption of caching and
data orchestration layers that sit between the object store and the
compute clusters. These layers bring data closer to the compute
resources, accelerate access, and can provide more familiar file
system semantics.

●​ Alluxio: An open-source data orchestration platform that
functions as a distributed caching layer. It intelligently manages
data across various storage tiers, including memory, SSDs, and
HDDs, within the compute cluster or on adjacent nodes.62 Alluxio
can connect to underlying persistent storage systems like
Amazon S3, GCS, or HDFS. For ML workloads using frameworks
like Spark or Ray, Alluxio caches frequently accessed data,
significantly improving I/O throughput and reducing the need for
repeated access to remote object stores.63 Its newer DORA
(Decentralized Object Repository Architecture) utilizes
consistent hashing for distributing both cached data and
metadata lookups across worker nodes, enhancing scalability
and eliminating single points of failure.65 Alluxio can expose
cached data via a FUSE interface, presenting it as a local folder
to applications.65

●​ JuiceFS: A cloud-native distributed file system that leverages
object storage (like S3) as its backend for data persistence and
employs a separate, pluggable metadata engine (options include

Redis, TiKV, or a proprietary distributed engine for the Enterprise
Edition).66 JuiceFS provides full POSIX compatibility, allowing
applications to interact with it as if it were a local file system. It
features multi-level caching (local client cache, distributed
cache in Enterprise Edition) to accelerate data access and can
manage hundreds of billions of files within a single namespace,
making it suitable for very large AI datasets.66

The provision of POSIX-compliant file system interfaces by these
caching layers (JuiceFS natively, Alluxio via FUSE) is a crucial
feature.65 Many existing ML tools, libraries, and even deep learning
frameworks are built with the expectation of interacting with data
through standard file system APIs. These layers abstract the
underlying object storage, making it transparent to the applications
and significantly reducing the engineering effort required to adapt
ML workloads to use object storage as their primary data source.
This creates a practical two-tier active data strategy: the object
store serves as the durable and scalable "source of truth," while a
faster caching layer provides high-performance access for active
training and data processing workloads.

D. Specialized Storage

Beyond broad categories like parallel file systems and object
storage, specific use cases within an ML system often benefit from
specialized storage solutions.

1. NFS for Model Artifacts and Checkpoints (with performance
considerations)

Network File System (NFS) is a mature and widely used protocol for
sharing files across a network. In ML systems, it often serves as a

convenient solution for storing model artifacts (trained model files,
configurations), experiment outputs, and shared home directories
for users.42 MLflow, for example, supports NFS as a backend for its
artifact store.8

While standard NFS implementations can be straightforward to set
up, they can become a performance bottleneck if not adequately
provisioned or optimized, especially when handling frequent writes
of large checkpoint files or concurrent access from multiple nodes.
To mitigate this, high-performance NFS solutions or specific
configuration tuning is necessary. Optimizations can include using
appropriate mount options (e.g., sync vs. async, though async
carries risks of data loss on server crash), increasing the number of
nfsd server threads, and leveraging NFS over RDMA (Remote Direct
Memory Access) to reduce latency and CPU overhead on both the
client and server.46 Commercial platforms like Silk are designed to
provide high-performance NFS (and SMB) storage specifically for
demanding AI training workloads, including optimized checkpointing
capabilities, often in cloud environments like Azure.47

The role of NFS in modern ML systems is thus shifting. While its
ubiquity and ease of use make it suitable for MLOps tooling (like
MLflow artifact stores) and general file sharing, it is generally not the
preferred choice for the primary, high-throughput data path during
active model training, where parallel file systems offer superior
performance. However, for scenarios where extreme parallelism isn't
the dominant requirement—such as storing model files that are read
once at the start of an inference job or infrequently during
development, or for managing smaller checkpoint files—a
well-configured NFS server can be a practical solution.

2. Local NVMe for Scratch Space and Temporary Data (e.g.,
direct use, ZFS LocalPV, RAM disks)

Local Non-Volatile Memory Express (NVMe) SSDs, present on the
compute nodes themselves, offer an extremely low-latency and
high-throughput storage tier.42 This makes them ideal for use as
scratch space for intermediate data generated during complex
preprocessing or training computations, for burst buffering (where
data is temporarily staged on local NVMe before being written to
slower shared storage, as with BeeGFS On Demand 51), or for local
caching of frequently accessed portions of a larger dataset.

Managing local NVMe resources, especially in containerized
environments like Kubernetes, requires specific approaches:

●​ Direct host path mounts: Simplest method, but lacks
Kubernetes PV integration and isolation.43

●​ ZFS LocalPV: In Kubernetes environments, ZFS LocalPV can be
used to aggregate multiple local NVMe disks on a node into a
unified ZFS pool. This pool can then be used for dynamic
provisioning of persistent volumes (PVs) with ZFS's advanced
features like data integrity and snapshotting, providing
high-performance, node-local storage for pods.43

●​ BeeGFS On Demand (BeeOND): As mentioned, this BeeGFS
feature can create temporary parallel file system instances using
the local SSDs of compute nodes, offering a high-performance
scratch space on a per-job basis.51

For scenarios demanding the absolute highest I/O performance for
very temporary data, and where sufficient system RAM is available,
RAM disks can be employed.69 A RAM disk uses a portion of the
system's main memory to emulate a block device. Since RAM is

orders of magnitude faster than even NVMe SSDs, this provides
unparalleled speed for transient files. However, data stored on a
RAM disk is volatile and will be lost upon system reboot or power
loss.70 Using RAM disks for temporary files can also help extend the
lifespan of SSDs by reducing the number of write cycles they
endure.70

Leveraging fast local NVMe for transient data, shuffle operations, or
as a cache for frequently accessed data segments is a critical
component of a tiered storage strategy. It complements slower,
shared storage systems by offloading I/O-intensive operations that
benefit from the lowest possible latency, thereby accelerating
specific stages of ML pipelines.

3. Metadata Storage (e.g., XFS, ext4 for MLOps tools)

MLOps tools and other system components generate and manage
significant amounts of metadata. This can include experiment
parameters, metrics, run information, artifact locations tracked by
tools like MLflow (if using a file-based backend store 26), or the small
.dvc files used by Data Version Control. The choice of file system for
storing this metadata can impact the performance and reliability of
these tools.

●​ XFS: A high-performance journaling file system designed for
scalability and handling large files and parallel I/O operations
efficiently. It can scale to exabytes of data and is well-suited for
servers that store large individual files or need to handle many
simultaneous I/O requests.72 Its journaling capabilities ensure
data integrity in case of system crashes.

●​ Ext4 (Fourth Extended Filesystem): A widely used, stable, and
general-purpose journaling file system for Linux. It performs well

with smaller files and offers robust security features, including
support for extended attributes and access control lists.72

The choice between XFS and ext4 for metadata storage depends on
the specific I/O patterns of the MLOps tools and the nature of the
metadata itself. If the metadata consists of many small files with
frequent updates, ext4 might offer better performance for those
specific operations. If the MLOps system involves storing larger log
files or other substantial metadata artifacts, XFS's strengths in
handling large files might be more beneficial. However, it's important
to note that for scalable MLOps deployments, particularly with tools
like MLflow, database-backed stores (e.g., PostgreSQL, MySQL) are
generally recommended over file-based stores for metadata
management due to better concurrency, queryability, and overall
performance at scale.71 The consideration of XFS vs. ext4 is more
pertinent if a file-based backend is deliberately chosen, perhaps for
simplicity in smaller or development setups.

V. Data Ingestion and Preprocessing Pipelines at Scale

The journey of data into an ML system, from raw sources through
preprocessing to readiness for model training, is a critical phase that
significantly influences overall pipeline efficiency and model quality.

A. Ingesting Diverse Data Sources (e.g., Apache Spark, Kafka for streaming)

Modern ML systems often need to ingest data from a multitude of
sources, which can include databases, data warehouses, streaming
platforms, APIs, and flat files. Efficient and scalable ingestion
mechanisms are therefore essential.

●​ Apache Spark: A powerful open-source distributed processing
system widely used for big data workloads, including Extract,

Transform, Load (ETL) operations.74 Spark's core engine provides
distributed task scheduling and execution. Spark SQL allows for
querying structured and semi-structured data using SQL-like
syntax, while Spark Streaming (and its successor, Structured
Streaming) enables the processing of real-time data streams.74
Spark's ability to connect to diverse data sources and perform
complex transformations in parallel makes it a common choice
for the initial stages of data ingestion and preparation in ML
pipelines.

●​ Apache Kafka: A distributed event streaming platform designed
for high-throughput, fault-tolerant, and scalable real-time data
ingestion.77 Kafka acts as a durable message queue, allowing
various source systems to publish data streams (events or
messages) to topics. Downstream applications, such as Spark
jobs or other stream processors, can then subscribe to these
topics and consume the data at their own pace. Kafka is often
deployed as a central data ingestion layer, decoupling data
producers from data consumers and providing a resilient buffer
for incoming data.77 Kafka Connect, a component of Kafka,
provides a framework for scalably and reliably streaming data
between Kafka and other systems like databases or file
systems.77

Data ingestion pipelines typically involve more than just moving data;
they often include initial data cleaning, validation, transformation,
and formatting to prepare the data for subsequent preprocessing
and model training stages.78

A robust architectural pattern involves decoupling the data ingestion
mechanism from the subsequent processing and training systems.
Using a dedicated ingestion layer like Apache Kafka provides such

decoupling.77 Source systems can continuously publish data to Kafka
topics, and downstream systems like Spark or Ray clusters can
consume this data as needed. This architecture offers several
advantages: it provides a buffer, absorbing bursts in data production;
it allows data producers and consumers to evolve independently;
and it enables multiple consumer applications to process the same
data streams for different purposes. This loose coupling enhances
the resilience and scalability of the overall data pipeline.

Furthermore, the rise of Generative AI, particularly models
employing Retrieval Augmented Generation (RAG), introduces new
complexities to the data ingestion phase.79 For RAG systems,
ingestion involves not only acquiring source documents but also
chunking them into manageable pieces, generating vector
embeddings for these chunks (often using another ML model), and
storing these embeddings along with their metadata in a specialized
vector store. This process, which includes NLP preprocessing and
ML inference as part of the ingestion flow itself, represents an
extension of traditional DataOps and requires specialized data
pipelines.79

B. Distributed Data Preprocessing Frameworks (e.g., Ray Data, Dask)

Once raw data is ingested, it typically undergoes extensive
preprocessing to transform it into a format suitable for ML model
training. This can include operations like feature scaling, encoding
categorical variables, handling missing values, text tokenization,
image augmentation, and feature engineering. As dataset sizes grow,
these preprocessing steps can become computationally intensive
and, if not handled efficiently, can create a "CPU wall," bottlenecking
the entire pipeline and leaving expensive GPUs idle during training.80

Distributed data preprocessing frameworks are designed to address
this challenge by scaling out these CPU-bound tasks across multiple
nodes.

●​ Ray Data: A scalable library within the Ray ecosystem
specifically designed for data loading and preprocessing in ML
workloads.81 Ray Data supports streaming execution, which is
beneficial for handling datasets larger than available memory
and for minimizing latency between preprocessing and training.
It integrates seamlessly with popular ML training frameworks like
PyTorch, TensorFlow, and Hugging Face Transformers, allowing
preprocessed data to be fed directly into training loops.81 Ray
Data can scale to petabyte-sized datasets and supports a wide
variety of data transformations and input/output file formats,
including Parquet, Lance, images, JSON, and CSV.81 It can also
be used in conjunction with caching layers like Alluxio to further
accelerate data access from remote storage.63 Several
organizations, including Pinterest, DoorDash, and Instacart,
utilize Ray Data for their ML data pipelines.81

●​ Dask: A flexible parallel computing library for Python that
enables scalable analytics. Dask provides Dask DataFrames and
Dask Arrays, which are parallel collections that mimic the APIs of
Pandas DataFrames and NumPy arrays, respectively, allowing
users to work with datasets larger than memory.83 The dask-ml
library includes scikit-learn-style transformers that can operate
on these Dask collections in parallel, performing tasks like
categorization (e.g., Categorizer for converting columns to
categorical dtype) and encoding (e.g., DummyEncoder for
one-hot encoding).83 Dask can be integrated into workflow
management tools like Luigi for building end-to-end data

pipelines 84 and can also run on Ray clusters via the dask_on_ray
scheduler.85

●​ Apache Spark: As discussed in the ingestion section, Spark is
also a powerful framework for large-scale data preprocessing.74
Its MLlib library provides a suite of ML algorithms and utilities,
including various tools for feature extraction, transformation,
and selection, all designed to operate in a distributed manner.74

The "CPU wall" is a common scenario where the speed of data
preprocessing on CPUs cannot keep pace with the consumption rate
of fast GPUs, leading to GPU underutilization.75 Distributed
CPU-based preprocessing frameworks like Ray Data, Dask, and
Spark are therefore essential components of a modern ML system,
ensuring that data can be prepared and delivered to the training
workers at a rate that matches the GPUs' processing capabilities.

Moreover, the emphasis on streaming execution, particularly in
frameworks like Ray Data 81, is becoming increasingly important for
handling extremely large datasets. Traditional batch ETL processes
often involve processing entire datasets at each stage, which can be
inefficient and require significant intermediate storage. Streaming
execution, by contrast, allows for the overlapping of preprocessing
and training stages: batches of data are preprocessed and
immediately passed to the GPU workers. This reduces end-to-end
latency, minimizes the need for storing massive intermediate
datasets, and helps maintain high GPU utilization, especially when
dealing with datasets that may not even fit into the distributed
memory of the CPU cluster.

VI. Optimizing Data Flow to GPUs: Leveraging GPUDirect Storage

Minimizing the time it takes to move data from storage into GPU

memory is crucial for maximizing the utilization of expensive GPU
resources and accelerating ML training. NVIDIA GPUDirect Storage
(GDS) is a key technology designed to address this challenge by
creating a more direct and efficient data path.

A. NVIDIA GPUDirect Storage (GDS) Architecture and Benefits (Reduced CPU
overhead, lower latency)

NVIDIA GPUDirect Storage enables a direct data path for Direct
Memory Access (DMA) transfers between GPU memory and storage
systems, whether local (e.g., NVMe SSDs) or remote (e.g.,
network-attached parallel file systems).57 This architecture
fundamentally changes how GPUs access data by avoiding the
traditional path where data is first copied from storage into CPU
system memory (a "bounce buffer") and then from CPU memory to
GPU memory.

The primary benefits of GDS include 54:

●​ Increased System Bandwidth: By eliminating the CPU memory
bottleneck, GDS allows for higher data transfer rates between
storage and GPUs.

●​ Decreased Latency: Direct transfers reduce the number of
steps and system calls involved, leading to lower data access
latency.

●​ Reduced CPU Utilization: Offloading data transfer operations
from the CPU frees up CPU cycles for other computational tasks
or allows for more power-efficient operation.

GDS is a component of the NVIDIA Magnum IO SDK, a suite of
software designed to optimize I/O for accelerated data centers.15 The
GPUDirect family of technologies also includes GPUDirect RDMA (for
direct GPU-to-NIC communication over a network) and GPUDirect

Peer-to-Peer (for direct GPU-to-GPU communication within the
same system or across NVLink).88 GDS is particularly beneficial in
scenarios where I/O is a significant bottleneck and the CPU is heavily
utilized in managing data transfers to and from its memory.54 Storage
solutions like MinIO AIStor are integrating GDS support to reduce
CPU consumption on GPU servers, thereby improving overall system
efficiency.88

By bypassing the CPU for data transfers directly to GPU memory,
GDS effectively shifts the potential performance bottleneck from
CPU-mediated I/O to the inherent limits of the storage system and
the network fabric.54 This underscores the importance of pairing GDS
with high-performance storage (like parallel file systems or fast
NVMe arrays) and low-latency, high-bandwidth networks. If the CPU
is no longer the chokepoint for data movement to the GPU, the
speed at which the storage can source data and the network can
transmit it become the new limiting factors.

However, GDS is not a universally applicable solution for all I/O
operations. It has specific requirements, such as the need for
RDMA-capable networks when accessing remote storage, support
from the underlying file system, and often the use of O_DIRECT file
access mode to bypass the OS page cache.54 For certain types of
I/O, such as operations on very small files, encrypted files, or
compressed files where direct DMA is not feasible, GDS may fall
back to a "compatibility mode." In this mode, data is transferred
through a more traditional path, and the performance benefits of
GDS are diminished or lost.54 Therefore, applications and data
formats must often be GDS-aware or GDS-friendly to achieve the
maximum performance improvements.

B. The cuFile API: Enabling Direct Storage-to-GPU Transfers

The primary interface for applications and frameworks to leverage
GDS is the cuFile API.86 This API is part of the GDS software stack
and provides a set of functions that allow CUDA applications to
perform high-performance I/O directly between storage and GPU
memory.

Key functionalities of the cuFile API include 87:

●​ File Registration: cuFileHandleRegister registers a file
descriptor with the GDS driver, preparing it for direct I/O
operations.

●​ Direct Read/Write Operations: Functions like cuFileRead and
cuFileWrite are analogous to POSIX pread and pwrite but are
designed to operate with GPU memory buffers as the source or
destination. These calls initiate DMA transfers directly between
the storage device and the specified GPU memory region.

●​ Stream Association: cuFile operations can be associated with
CUDA streams using cuFileReadAsync and cuFileWriteAsync.
This enables asynchronous I/O, where data transfers are ordered
with respect to computations on a CUDA stream, allowing for
effective overlapping of I/O and computation.

●​ Batch Operations: APIs like cuFileReadBatch and
cuFileWriteBatch allow for submitting multiple I/O requests in a
single call, which can amortize overhead and improve efficiency
for many small I/Os.

The underlying mechanism often involves the nvidia-fs.ko kernel
module, which orchestrates the direct I/O from DMA/RDMA-capable
storage devices to the user-allocated GPU memory.89 If a direct path
is not possible due to unsupported configurations or file types, the

cuFile library can transparently fall back to a compatibility mode,
typically involving staging data through CPU system memory,
ensuring that the APIs can be used ubiquitously even if GDS
acceleration is not available for a particular operation.87

The cuFile API represents a significant shift towards GPU-centric I/O
programming. It empowers developers to explicitly manage and
optimize data transfers between storage and GPU memory, treating
the GPU as a first-class participant in I/O operations rather than a
passive recipient of data shuttled through the CPU. This explicit,
proactive approach to data movement, as opposed to implicit
requests triggered by page faults, is key to maximizing performance
in GDS-enabled systems.87 This paradigm requires modifications in
how I/O is handled within ML frameworks and custom applications to
fully exploit GDS capabilities.

C. GDS Integration with Parallel File Systems (e.g., Lustre with GDS, IBM Spectrum
Scale with GDS)

For GDS to be effective with the large, persistent datasets typically
used in ML training, the underlying storage systems, particularly
parallel file systems, must provide native integration. This involves
kernel drivers and user-space libraries that can map file I/O
operations to GDS direct transfers.

●​ Lustre: Amazon FSx for Lustre is a prominent example of a
managed Lustre service that supports GDS. When used with
EFA-capable EC2 instances, FSx for Lustre can leverage GDS to
enable direct data transfer between the file system and GPU
memory, achieving very high client throughput (up to 1200 Gbps
per client is reported).49 GDS support is often automatically
enabled on EFA-enabled FSx for Lustre file systems when

accessed from appropriately configured clients.50

●​ IBM Spectrum Scale (GPFS): This parallel file system also
provides robust GDS support. It allows data to be read or written
directly from an NSD (Network Shared Disk) server's pagepool to
the GPU buffers on client nodes via RDMA (over InfiniBand or
RoCE).45 This requires the CUDA toolkit to be installed on the
GDS clients and appropriate MOFED (Mellanox OpenFabrics
Enterprise Distribution) drivers for the RDMA fabric.

●​ Other File Systems: The nvidia-fs.ko driver, which is a core
component of the GDS software stack, also lists support for
other file systems such as XFS and EXT4 (when used in ordered
mode on NVMe/NVMeOF devices), NFS over RDMA (with MOFED
5.1 and above), and other RDMA-capable distributed file systems
like DDN EXAScaler (which underlies some Lustre distributions),
WekaFS, and VAST Data.89 Quantum's Myriad all-flash file system
is also developing a client that leverages GDS technology.59

This broad support across various high-performance file systems
indicates that GDS is becoming a standard feature for storage
solutions targeting AI/ML workloads. The file system itself must
cooperate with the cuFile library and the GDS kernel components
(like nvidia-fs.ko or the newer upstream kernel PCI P2PDMA
infrastructure 87) to enable the direct data path.

D. GDS in ML Frameworks: PyTorch (DALI, KvikIO) and TensorFlow (DALI)

While GDS provides the low-level infrastructure for direct
GPU-storage I/O, its benefits are most readily realized when
integrated into high-level ML frameworks. This integration is still
evolving.

●​ PyTorch:

○​ The default PyTorch Dataset and DataLoader classes
primarily work with standard POSIX file APIs for data loading
and checkpointing.91

○​ To leverage GDS with PyTorch, specialized libraries are often
required:

■​ NVIDIA DALI (Data Loading Library): DALI is a library
designed to accelerate data loading and preprocessing
pipelines by offloading these tasks to the GPU. DALI can
replace or augment built-in PyTorch DataLoaders and
provides support for GDS for certain data formats (e.g.,
NumPy arrays) when reading from file-based storage.91

■​ KvikIO: An open-source library from RAPIDS that
provides Python and C++ bindings directly to the cuFile
API, enabling GDS access. KvikIO can be integrated into
PyTorch data loading pipelines to read/write data directly
to/from GPU memory.91

○​ There is active interest and feature requests within the
PyTorch community for more first-class, native support for
GDS within core components like IterableDataset and for
checkpointing operations, aiming to simplify its adoption and
broaden its applicability.95

●​ TensorFlow:
○​ TensorFlow's standard data input pipeline API is tf.data.
○​ Similar to PyTorch, direct GDS integration into the core

tf.data mechanisms is not as explicit. However, NVIDIA DALI
also offers a TensorFlow plugin (nvidia-dali-tf-plugin) that
allows DALI pipelines (which can include GDS-accelerated
operations and GPU-based augmentations) to be seamlessly
integrated as a data source for TensorFlow models.92

○​ While older discussions touch upon GPU memory

management and data prefetching in TensorFlow 97, and the
DALI TensorFlow plugin API documentation exists 98, the
specifics of tf.data directly using cuFile without an
intermediary like DALI are less clear from the provided
materials.

The current state suggests that GDS adoption within major ML
frameworks, while progressing, often relies on intermediary libraries
like DALI or direct integration of cuFile wrappers like KvikIO. This
adds a layer of complexity for ML engineers wishing to leverage GDS,
as it may require deviating from standard framework data loaders or
incorporating additional dependencies. NVIDIA DALI, in particular, is
emerging as a key enabler, acting not only as a GPU-accelerated
data augmentation library but also as a bridge to GDS capabilities
for both PyTorch and TensorFlow.91 This makes DALI a critical
component for building high-performance input pipelines that can
fully exploit GDS.

E. Best Practices for Staging Preprocessed Data for GDS Access

To maximize the benefits of GPUDirect Storage, data should be
appropriately prepared and "staged" on storage systems that are
GDS-accessible and in a format conducive to direct transfers.

1.​ Separate Preprocessing and Staging: Preprocessing tasks
(cleaning, transformation, augmentation) are often
CPU-intensive. It's a good practice to perform these using
distributed CPU-driven systems like Apache Spark or Ray Data.
The results of this preprocessing should then be written
(staged) to a GDS-enabled, high-performance storage system
(e.g., a parallel file system like Lustre or Spectrum Scale).88

2.​ Use High-Performance GDS-Compatible Storage: Pair GDS

with storage solutions that can match its throughput potential,
such as NVMe SSDs, NVMe-over-Fabrics (NVMe-oF) arrays, or
high-performance parallel file systems specifically validated for
GDS compatibility.56

3.​ Optimize Data Format and Layout: GDS, particularly when
using O_DIRECT for bypassing the OS cache, performs best with
large, contiguous, and memory-aligned I/O operations.87 This
might influence how datasets are sharded, batched, or serialized
during the preprocessing stage. Avoid many small, random I/O
operations if possible. Uncompressed data often allows for the
most direct GDS path.

4.​ Leverage Tiered Storage: Implement a tiered storage strategy
where the actively used, preprocessed training data resides on
the GDS-enabled hot tier, while raw or less frequently accessed
data is kept on slower, more cost-effective tiers.56

5.​ Profile and Monitor I/O: Use profiling tools (like NVIDIA's gdsio
utility 57 or other system monitoring tools) to understand I/O
patterns, identify bottlenecks, and verify that GDS is being
effectively utilized.56 Check for GDS compatibility mode
fallbacks.54

6.​ Integrate with DataLoader APIs: When using ML frameworks,
ensure that the DataLoader APIs are configured to efficiently
read batches of the staged, preprocessed data from the
GDS-enabled storage in real-time to feed the GPUs.88

The "staging" step is critical because GDS primarily accelerates the
transfer of data that is already in a suitable state and location. It's
not a magic bullet that makes any data source instantly fast for GPU
access. The data must first be transformed and placed onto a
storage system that GDS can efficiently interact with. This implies a

deliberate multi-stage data pipeline where raw data is ingested,
processed, and then explicitly staged for GDS-accelerated
consumption by the training cluster. This careful preparation ensures
that the high-speed path offered by GDS can be fully exploited. The
preference of GDS for larger, contiguous file access patterns also
suggests that data engineering practices upstream of model training
should consider organizing data into larger chunks or files, favoring
sequential access patterns to maximize GDS efficiency.87

VII. MLOps: Ensuring Reproducibility, Efficiency, and Governance

Machine Learning Operations (MLOps) encompasses the practices,
tools, and cultural shifts required to build, deploy, and maintain ML
systems reliably and efficiently at scale. For a modern ML system, a
robust MLOps framework is indispensable for managing the
complexities of the ML lifecycle, including experiment tracking,
artifact management, model versioning, hyperparameter
optimization, and model serving. Key goals are to ensure
reproducibility, enhance collaboration, improve efficiency, and
provide governance.25

A. Experiment Tracking and Artifact Management (e.g., MLflow, Kubeflow, DVC –
backend/artifact store choices)

Tracking ML experiments—including parameters, metrics, code
versions, and generated artifacts—is fundamental for reproducibility,
debugging, and comparing different modeling approaches.24

●​ MLflow: An open-source platform designed to manage the
end-to-end ML lifecycle.25

○​ MLflow Tracking: Allows logging of parameters, metrics,
source code versions (if using MLflow Projects), and output
artifacts for each experimental run. It provides a UI for

visualizing and comparing runs.26

○​ Backend Store: Persists the lightweight metadata
associated with runs (e.g., run ID, parameters, metrics, tags).
MLflow supports file-system-based backends (storing
metadata in local files, typically within a ./mlruns directory)
or, for more scalable and collaborative setups,
database-backed stores such as PostgreSQL, MySQL, or
SQLite.26 Using a database backend is a requirement for
leveraging MLflow Model Registry features.71

○​ Artifact Store: Stores the larger output files (artifacts) from
runs, such as trained model files, data samples, or
visualizations. MLflow supports various artifact stores
including local file paths (e.g., on an NFS mount), Amazon
S3, Azure Blob Storage, Google Cloud Storage, and HDFS.8
S3-compatible object stores like MinIO or OVHcloud Object
Storage can also be used.104

○​ Implications for GDS with MLflow: If MLflow's artifact store is
configured to use a GDS-enabled file system (e.g., Lustre or
Spectrum Scale, potentially mounted via NFS or accessed
through a custom URI handler if MLflow supports it), then
artifacts written to or read from this store by GDS-aware
applications could benefit. For instance, if a training job
saves a large model checkpoint (an artifact) to a
GDS-enabled Lustre file system, and a subsequent
evaluation job (also GDS-aware) reads this checkpoint, the
transfer could be accelerated. If the artifact store is an
object store like S3, direct GDS benefits are less likely unless
an S3 gateway with GDS support or a GDS-enabled caching
layer (like Alluxio) is placed in front of the S3 bucket. MLflow
primarily records the artifact_uri, pointing to the artifact's

location.
●​ Kubeflow Pipelines (KFP): A component of Kubeflow for

building, deploying, and managing multi-step ML workflows
(pipelines) on Kubernetes.24

○​ Metadata Store: KFP stores metadata about pipeline runs,
experiments, jobs, and individual pipeline step
inputs/outputs. This is typically stored in a MySQL database
deployed as part of Kubeflow.105

○​ Artifact Store: KFP stores pipeline artifacts (which can
include serialized data, models, metrics files, visualizations)
in an object store. Supported backends include MinIO (often
deployed by default with Kubeflow), Amazon S3, and Google
Cloud Storage.105 The location for these artifacts is
configured via the pipeline_root setting, which can be
specified at the pipeline definition level or when submitting a
run.107

○​ Implications for GDS with KFP: Similar to MLflow, if the KFP
pipeline_root points to an object store bucket that is, for
example, an S3 gateway to a GDS-enabled parallel file
system, or if KFP components within pipeline steps are
written to be GDS-aware when interacting with a directly
mounted GDS-enabled file system (if KFP allows such file://
URIs for artifacts), then GDS could accelerate artifact I/O.
The directness of this integration depends on KFP's artifact
handling mechanisms and whether pipeline components can
leverage cuFile.

●​ DVC (Data Version Control): An open-source tool that versions
data and models by storing small metadata files (containing
checksums and pointers) in Git, while the actual large data files
are stored in a separate remote storage location.9 Supported

remotes include S3, GCS, Azure Blob Storage, SSH servers,
HDFS, and local file systems.

○​ Implications for GDS with DVC: If DVC's configured remote
storage is a GDS-enabled parallel file system, then dvc push
would store data there, and dvc pull would retrieve it. If the
local workspace where dvc pull materializes the data (or a
local cache directory used by DVC) is on a GDS-enabled file
system (e.g., local NVMe with GDS support, or a
GDS-enabled scratch space), then subsequent training jobs
that are GDS-aware could access this data with GDS
acceleration.

A common architectural pattern observed in tools like MLflow and
Kubeflow is the decoupling of lightweight metadata storage from
heavyweight artifact storage.8 Metadata, which includes parameters,
metrics, and run information, benefits from the querying and
transactional capabilities of a database. Artifacts, such as large
model files or datasets, require scalable and often more
cost-effective bulk storage solutions like object stores or parallel file
systems. This separation allows for independent optimization of each
storage type.

The choice of artifact store has significant implications for the
performance of downstream tasks. If preprocessed datasets or
trained models, managed as artifacts by these MLOps tools, are
stored on high-performance, GDS-enabled storage, subsequent
pipeline steps like further training, model evaluation, or model
serving can access these artifacts much more rapidly. In such
scenarios, the artifact store transitions from being a passive
repository to an active component of the high-performance data
pipeline, with the artifact_uri (in MLflow) or pipeline_root (in

Kubeflow) becoming a critical path for overall system performance.

B. Model Versioning Strategies for Large Models and Datasets (e.g., MLflow Model
Registry, DVC with remote storage)

Effective versioning in ML requires tracking not only the model binary
itself but also the training code, the specific dataset version used,
hyperparameters, and the software environment to ensure full
reproducibility.99

●​ MLflow Model Registry: Provides a centralized repository for
managing the lifecycle of MLflow Models.112 It allows users to:

○​ Register models that have been logged during MLflow
Tracking runs.

○​ Version these registered models (e.g., "Version 1", "Version
2").

○​ Assign stages to model versions (e.g., "Staging",
"Production", "Archived").

○​ Use aliases (e.g., "champion") to point to specific model
versions for easier reference in deployment.

○​ Add tags and annotations for better organization and
description.

○​ Track model lineage, linking a model version back to the
MLflow run that produced it (which contains information
about parameters, metrics, and source code).114 Access to
the Model Registry typically requires a database-backed
backend store for MLflow.71 Models can be retrieved for
deployment using URIs like
models:/<model_name>/<model_version> or
models:/<model_name>/<alias>.114

●​ DVC (Data Version Control): As previously discussed, DVC
versions large files, including models and datasets, by storing

their checksums and metadata in Git, while the actual files
reside in remote storage.9 The workflow involves using dvc add
<model_file_or_data_dir> to track changes, dvc commit to record
the new version's metadata, and git commit to version the .dvc
files. dvc push and dvc pull are used to synchronize the actual
large files with the configured remote storage. This approach
tightly couples data and model versions with code versions in
Git.

●​ Git LFS (Large File Storage): An extension to Git designed to
handle large binary files more efficiently than native Git.9 Git LFS
replaces large files in the Git repository with small text pointer
files. The actual large files are stored on a separate Git LFS
server. While simpler than DVC for basic large file versioning
alongside code, Git LFS is less specialized for the broader ML
context of tracking experiments, metrics, or complex data
dependencies.

True model reproducibility extends beyond merely versioning the
model file itself. It necessitates capturing the entire context of the
model's creation: the exact version of the training code, the specific
dataset snapshot used, all hyperparameters, and the complete
software environment (libraries, drivers, OS).99 Tools like MLflow
achieve this by linking registered models back to the comprehensive
tracking data of the run that produced them. DVC achieves this by
enabling the versioning of data, code, and pipeline definitions
together within a Git repository.

Furthermore, modern ML "models," especially complex ones like
LLMs, are often not single files but collections of artifacts. These can
include model weights, tokenizer files, configuration files, and even
prompt templates. Versioning systems must be capable of handling

these grouped artifacts cohesively as a single versionable "model
unit." MLflow's concept of an "MLflow Model" (a directory containing
the model files and a MLmodel descriptor file) inherently supports
this.114 DVC can track entire directories, allowing a collection of
related model files to be versioned together.

C. Distributed Hyperparameter Optimization (e.g., Ray Tune, Optuna – data
access patterns)

Hyperparameter Optimization (HPO) is a critical step in maximizing
model performance. Automating and scaling HPO can significantly
accelerate the model development process.

●​ Ray Tune: A distributed HPO library that is part of the Ray
ecosystem.103 Ray Tune can launch multiple HPO trials
concurrently across a Ray cluster, leveraging multiple nodes and
GPUs.119 It integrates seamlessly with Ray Train, allowing each
HPO trial to itself be a distributed training run.120 Ray Tune
supports a variety of advanced search algorithms (e.g., ASHA,
HyperBand, Population Based Training) and early stopping
techniques to efficiently explore the hyperparameter space.103
Trial states and checkpoints can be saved to persistent storage,
including cloud object storage like S3, which is important for
fault tolerance and resuming long-running HPO jobs.121

●​ Optuna: A lightweight yet powerful HPO framework known for
its define-by-run API and intelligent sampling strategies, such as
the Tree-structured Parzen Estimator (TPE).103 Optuna can be
parallelized for distributed HPO in several ways: using Joblib
with a Spark backend for distribution across a Spark cluster 122,
or by using a shared relational database (e.g., PostgreSQL) to
store trial states and coordinating multiple Optuna worker
processes, often orchestrated by Kubernetes.123 Optuna also

integrates with MLflow for logging and tracking HPO trials.122

During distributed HPO, each trial typically requires access to the
training and validation datasets. If these datasets are large and
stored on shared infrastructure (e.g., NFS, a parallel file system, or
object storage with a caching layer), the storage system must be
able to handle concurrent access from many trials without becoming
a bottleneck. When Ray Tune is used with Ray Data, data can be
streamed and preprocessed efficiently for each trial.82 If data resides
in cloud object storage like S3, as is common with Ray Tune setups
121, each trial or its group of distributed workers will fetch the data. In
such scenarios, data caching layers (e.g., Alluxio, JuiceFS) or
efficient data loading mechanisms within each trial become crucial
to prevent HPO from being I/O-bound.

The tight integration of HPO tools with distributed training
frameworks, exemplified by Ray Tune and Ray Train 120, marks an
important trend. HPO is evolving from simply launching many
independent, single-node training jobs to orchestrating and
managing multiple distributed training jobs as individual HPO trials.
This requires the HPO system to have more sophisticated resource
management capabilities, allocating resources (CPUs, GPUs) for
each distributed trial, overseeing its lifecycle, and aggregating
results. This close coupling enables more advanced HPO strategies
to be applied effectively to complex, distributed ML models.

D. Considerations for Model Serving (e.g., KServe, Triton with MLflow integration)

Deploying trained and versioned models for inference is the final
step in delivering value from the ML system. Serving platforms need
to be scalable, reliable, and capable of loading specific model
versions.

●​ MLflow: Offers built-in capabilities for model deployment. The
mlflow models serve command can deploy an MLflow Model as a
local REST API endpoint, using FastAPI (default) or MLServer as
the backend serving engine.115 The MLServer backend is
particularly significant as it enables integration with
Kubernetes-native serving frameworks like KServe (formerly
KFServing) and Seldon Core, allowing MLflow Models to be
deployed in scalable, production-grade Kubernetes
environments.115 Models are typically retrieved from the MLflow
Model Registry using URIs that specify the model name and
version (e.g., models:/<model_name>/<model_version>) or an
alias.114

●​ KServe: A standard Model Inference Platform on Kubernetes,
built for highly scalable and production-ready model serving. It
is often used as the serving component within Kubeflow.24
KServe supports features like serverless inference,
scale-to-zero, canary deployments, and explainability.

●​ NVIDIA Triton Inference Server: A high-performance inference
server that supports models from various ML frameworks
(TensorFlow, PyTorch, ONNX, TensorRT, etc.). Triton is designed
for maximizing throughput and utilization on GPUs (and CPUs). It
can be deployed standalone or integrated with platforms like
KServe.

For a seamless MLOps workflow, the model serving system must
integrate with the model versioning and artifact management
components. Typically, a CI/CD pipeline would trigger the
deployment of a new model version to the serving environment once
it has been validated and promoted (e.g., to "Production" stage in
MLflow Model Registry). The serving platform then fetches the

specified model artifacts from the artifact store (e.g., S3, NFS) based
on the information provided by the model registry.

The MLflow Model Registry plays a pivotal role in this CI/CD process
for models.114 By versioning models and tracking their lifecycle
stages, it provides the necessary control and traceability for
automated deployment, A/B testing, and rollbacks. Serving tools are
configured to pull specific, approved model versions from this
registry, ensuring that the correct model is deployed into production.

Furthermore, the standardization of model packaging is key for
achieving interoperable and flexible model serving. MLflow's "MLflow
Model" format, which packages a model along with its dependencies
and a standardized descriptor file (MLmodel), aims to provide a
common format that can be understood and deployed by various
serving tools (MLflow's own server, MLServer, Amazon SageMaker,
etc.).114 This reduces the friction involved in deploying models trained
in different ML frameworks, as the serving infrastructure can rely on
the standardized MLflow format rather than needing to intimately
understand the specifics of every framework.

VIII. System Integration: Connecting the Components for a
Cohesive ML Platform

A modern large-scale ML system is not a monolithic entity but a
complex ecosystem of specialized sub-systems for compute,
networking, storage, data processing, and MLOps. Effective
integration of these components is crucial for building a cohesive
and high-performing platform.

A. Overview of Component Interactions (Visualized for Mermaid)

The following outlines the primary data and control flows within the

proposed ML system architecture. This description is intended to be
suitable for generating a Mermaid diagram to visually represent
these interactions.

Data Flow:

1.​ Raw Data Ingestion:
○​ Source: External data sources (databases, APIs, logs,

existing data lakes).
○​ Destination: Warm Tier Object Storage (e.g.,

S3-compatible like MinIO). This serves as the primary,
scalable data lake for raw and semi-processed data.

○​ Mechanism: Ingestion pipelines, potentially using Kafka for
streaming or batch tools for bulk loads.

2.​ Data Preprocessing:
○​ Source: Warm Tier Object Storage.
○​ Processing: Distributed Preprocessing Cluster (e.g.,

Apache Spark, Ray Data, or Dask running on CPU-optimized
Kubernetes nodes or dedicated CPU cluster).

○​ Caching (Optional): If object storage is the source, a caching
layer like Alluxio or JuiceFS can sit between object storage
and the preprocessing cluster to accelerate reads.

○​ Destination (Staged Data): Hot Tier Parallel File System
(e.g., Lustre, IBM Spectrum Scale, BeeGFS), which should be
GDS-enabled. Alternatively, for smaller datasets or specific
Ray Data workflows, data might be directly streamed or
cached within the Ray cluster's memory/local disk.

○​ Mechanism: Preprocessing frameworks read from object
storage (via cache if present), perform transformations, and
write results to the parallel file system.

3.​ Model Training Data Path:

○​ Source: Hot Tier Parallel File System (or Alluxio/JuiceFS
cache over object storage if GDS is integrated there).

○​ Destination: GPU Memory within the GPU Training Cluster.
○​ Mechanism: High-Performance Network Fabric (e.g.,

InfiniBand or Ethernet with RoCEv2). Data loaders within ML
frameworks (e.g., PyTorch DataLoader, TensorFlow tf.data,
potentially using NVIDIA DALI or KvikIO) read data from the
parallel file system, leveraging NVIDIA GPUDirect Storage
(GDS) and the cuFile API for direct DMA transfer into GPU
memory, bypassing the CPU.

4.​ Model Checkpointing:
○​ Source: GPU Memory (model state during training).
○​ Destination: Hot Tier Parallel File System or a

High-Performance NFS Server (optimized for writes,
possibly with RDMA).

○​ Mechanism: Training script periodically saves model
checkpoints. GDS can also accelerate writes if the target
storage is GDS-enabled and the framework supports GDS
for checkpointing.

5.​ Model Artifacts & Experiment Logging:
○​ Source: Training scripts, evaluation scripts.
○​ Destination (Artifacts): MLOps Artifact Store (e.g., Object

Storage, NFS, or even the parallel file system, as configured
in MLflow/Kubeflow).

○​ Destination (Metadata): MLOps Backend Store (e.g.,
PostgreSQL database for MLflow/Kubeflow).

○​ Mechanism: MLOps tools (MLflow, Kubeflow Pipelines) log
metrics, parameters to the backend store and save model
files, visualizations, etc., to the artifact store.

Control/Orchestration Flow:

1.​ User/CI-CD System Interaction:
○​ Interface: Git (for code, DVC metafiles), MLOps Platform

UI/CLI (MLflow, Kubeflow).
○​ Action: User commits code, triggers pipeline, launches

experiment, promotes model.
2.​ MLOps Platform Orchestration:

○​ Component: MLOps Orchestrator (e.g., MLflow Projects,
Kubeflow Pipelines, custom scripts invoking Ray/Slurm jobs
via Kubernetes).

○​ Action 1 (Preprocessing): Schedules and manages data
preprocessing jobs on the Distributed Preprocessing Cluster.

○​ Action 2 (Training): Schedules and manages model training
jobs on the GPU Training Cluster (which itself is managed
by a lower-level orchestrator like Kubernetes, Slurm, or Ray).
Passes hyperparameters, data paths.

○​ Action 3 (Tracking/Versioning): Interacts with MLOps
Backend Store and Artifact Store to record experiment
details and version models/data (e.g., via MLflow Tracking
Server, MLflow Model Registry, DVC commands).

3.​ GPU Cluster Workload Management:
○​ Component: Cluster Manager (Kubernetes, Slurm, Ray).
○​ Action: Allocates GPU and other resources to training jobs,

manages container execution (if applicable), monitors job
status.

4.​ Model Serving Deployment:
○​ Source: MLOps Model Registry (e.g., MLflow Model

Registry).
○​ Action: CI/CD pipeline or manual trigger initiates deployment

of a specific model version.
○​ Destination: Model Serving Platform (e.g., KServe, NVIDIA

Triton Inference Server, running on Kubernetes or dedicated
inference cluster).

○​ Mechanism: Serving platform retrieves the specified model
artifacts from the MLOps Artifact Store (location obtained
from the Model Registry) and deploys the model as an
inference endpoint.

This interconnectedness highlights that the system is far more than
the sum of its parts. No single technology or component dominates
all aspects of the ML lifecycle. For instance, object storage is
excellent for establishing a scalable raw data lake, but
high-performance parallel file systems are indispensable for the
demanding I/O patterns of model training. Similarly, CPU-based
clusters are optimal for data preprocessing tasks, while GPU clusters
are the workhorses for training deep learning models. This inherent
specialization across different stages necessitates careful and
robust integration between these sub-systems.

Furthermore, network performance is not just a concern for
GPU-to-GPU communication within the training cluster.5 It is equally
critical at multiple other interfaces.88 The network link between the
primary data lake (object storage) and the preprocessing cluster, the
link from the preprocessing cluster to the staging storage (parallel
file system), and finally, the fabric connecting the staging storage to
the GPU training cluster—all these data paths must be adequately
provisioned in terms of bandwidth and latency. A bottleneck in any of
these segments can starve the GPUs and negate the benefits of a
high-performance training cluster.

B. Example Technology Stack and Configuration Notes (Illustrative choices for
each layer)

To provide a more concrete illustration, the following table outlines
an example technology stack for a modern ML system, combining
many of the components discussed. This is an illustrative example,
and specific choices would depend on budget, scale, existing
infrastructure, and team expertise.

Table 4: Example ML System Technology Stack

System Layer Specific Technology
Choice

Key Configuration
Notes/Rationale

GPU Compute Nodes Servers with 8x NVIDIA
H200 141GB GPUs

SXM form factor for
high intra-node
bandwidth via
NVLink/NVSwitch.
Paired with high-core
count CPUs (e.g., AMD
Epyc or Intel Xeon
Scalable) and ample
system RAM (e.g.,
1-2TB per node).

GPU Cluster
Interconnect

NVIDIA Quantum-2
InfiniBand (NDR
400Gbps) or 800GbE
Ethernet with RoCEv2
(e.g., Arista
7060X6/7800R4 series
5)

2-level Fat-Tree
(Leaf-Spine) topology.
Ensure RDMA is
enabled. For RoCEv2:
configure PFC, ECN for
lossless operation;
ensure consistent MTU

across fabric.

Cluster Orchestration Kubernetes (e.g., GKE,
EKS, AKS, or on-prem)
with Ray deployed on
Kubernetes (Ray
Operator)

Kubernetes for base
infrastructure
management. Ray for
distributed Python/ML
workloads (Ray Train,
Ray Tune, Ray Serve).
GPU sharing (MIG) and
node labeling in
Kubernetes.7

Storage - Hot Tier
(Training Data)

Lustre file system (e.g.,
managed cloud service
like AWS FSx for Lustre
49 or on-prem DDN
EXAScaler)

GDS-enabled for direct
GPU access.
High-throughput
configuration (e.g.,
SSD-based). POSIX
access for frameworks.

Storage - Warm Tier
(Raw Data Lake,
Large Artifacts)

S3-compatible Object
Storage (e.g., MinIO,
Ceph RGW, or cloud
provider S3/GCS/Azure
Blob)

Highly scalable and
durable. Cost-effective
for large volumes.

Storage -
Caching/Orchestratio
n for Warm Tier

Alluxio or JuiceFS Deployed between
object storage and
compute
(preprocessing/training
clusters). Provides
POSIX access and
distributed caching to

accelerate reads from
object storage.63

Storage - Scratch
(Node-Local)

Local NVMe SSDs on
GPU and CPU nodes

Managed via ZFS
LocalPV in Kubernetes
for dynamic
provisioning of scratch
volumes.43 Used for
temporary data, shuffle
operations.

Storage - MLOps
Artifacts/Checkpoint
s (Alternative)

High-Performance NFS
Server (e.g., NetApp,
Dell PowerScale, or
custom build with NFS
over RDMA 46)

For MLflow artifact
store if not using
object storage directly.
Optimized for mixed
I/O, reliable for
checkpoints.

Data Ingestion Apache Kafka +
Apache Spark (running
on Kubernetes)

Kafka for real-time
stream ingestion and
buffering.77 Spark for
batch ETL from diverse
sources and initial
processing.74

Data Preprocessing
(Final Stage)

Ray Data (running on
Ray cluster within
Kubernetes)

For scalable,
distributed
preprocessing feeding
directly into Ray Train.
Leverages CPU nodes
efficiently.81

MLOps - Experiment
Tracking & Model
Registry

MLflow Tracking Server Backend: Managed
PostgreSQL
database.71 Artifact
Store: S3-compatible
Object Storage (via
Alluxio/JuiceFS if
caching needed) or the
dedicated NFS server.8

MLOps - Data &
Model Versioning

DVC (Data Version
Control)

Integrated with Git.
Remote storage for
DVC cache pointing to
the S3-compatible
object store or parallel
file system.

MLOps -
Hyperparameter
Optimization

Ray Tune Integrated with Ray
Train. Leverages the
Ray cluster for
distributed trials.
Checkpoints trials to
shared storage (e.g.,
NFS or object store).121

MLOps - Model
Serving

KServe on Kubernetes,
with NVIDIA Triton
Inference Server as the
backend

Models pulled from
MLflow Model Registry.
KServe for scalable,
standardized
deployment.115

A hybrid orchestration model, using Kubernetes as the foundational
platform with Ray deployed on top for ML-specific workloads, offers

considerable flexibility. Kubernetes handles the underlying
infrastructure provisioning, scaling, and management of
containerized applications, including Ray clusters themselves (often
via a Ray Kubernetes Operator). Ray then provides the specialized
environment and libraries (Ray Train, Ray Tune, Ray Data, Ray Serve)
tailored for distributed Python and machine learning tasks.6 For
certain highly parallel, HPC-style training jobs, an orchestrator like
Slurm might even be run on Kubernetes (e.g., via Soperator 6) to
leverage its advanced batch scheduling capabilities. This layered
approach combines the strengths of general-purpose container
orchestration with domain-specific ML and HPC workload
management.

IX. Conclusion and Future Outlook

The design of a modern, large-scale ML system is a multifaceted
endeavor, requiring a delicate balance between raw component
performance, system-level integration, and operational efficiency.
The blueprint outlined in this report emphasizes several core
principles: the synergistic performance of compute, network, and
storage; the necessity of high-speed, low-latency networking with
RDMA capabilities; a tiered and specialized storage architecture to
cater to diverse data access patterns; optimized data paths directly
to GPU memory via technologies like GPUDirect Storage; and a
comprehensive MLOps framework to ensure reproducibility,
governance, and agility throughout the ML lifecycle. Building such a
system is undoubtedly complex, but it is a prerequisite for
organizations aiming to stay at the cutting edge of AI research and
deployment.

Looking ahead, several trends are poised to further shape the

evolution of ML systems:

1.​ Deeper Integration of Compute, Network, and Storage: The
lines between these traditionally distinct domains will continue
to blur. Technologies like Data Processing Units (DPUs) that
offload networking and storage tasks from CPUs, computational
storage devices that perform processing directly on stored data,
and increasingly intelligent network fabrics (as envisioned by the
UEC and exemplified by NVIDIA SHARP 16) point towards a future
where system components are more deeply aware of and
integrated with each other. This tighter coupling aims to
minimize data movement and process data closer to where it
resides or where it is needed, further reducing latency and
improving efficiency.

2.​ Advancements in Hardware/Software Co-design: The
development of AI-specific hardware (next-generation GPUs,
custom ASICs) will increasingly be accompanied by co-designed
software stacks (libraries, compilers, frameworks) to extract
maximum performance.57 This co-design philosophy ensures
that software can fully exploit unique hardware features, and
hardware is architected with the needs of leading AI workloads
in mind.

3.​ More Intelligent and Automated MLOps: MLOps platforms will
become more sophisticated, incorporating AI itself to automate
tasks like optimal resource allocation, proactive anomaly
detection in model performance, automated retraining triggers,
and intelligent data tiering. The goal is to create self-optimizing
and self-healing ML pipelines that require less manual
intervention.

4.​ Sustainability and Total Cost of Ownership (TCO) as

Primary Design Drivers: As ML clusters scale to
unprecedented sizes, their energy consumption and overall TCO
are becoming critical concerns.10 Future designs will place a
greater emphasis on power-efficient hardware components,
energy-aware scheduling, optimized cooling solutions, and
software techniques that maximize resource utilization to reduce
idle power. The development of more heterogeneous compute
environments, leveraging different types of accelerators for
different tasks, may also contribute to better energy efficiency.

The journey to build and operate these advanced ML systems
requires continuous learning, adaptation, and a commitment to a
holistic, integrated design approach. The principles and technologies
discussed provide a robust foundation for architecting the ML
infrastructure of tomorrow.

Works cited

1.​ Machine Learning Architecture: What It Is, Components & Types, accessed May
19, 2025, https://lakefs.io/blog/machine-learning-architecture/

2.​ GPU Cluster Explained: Architecture, Nodes and Use Cases - Scale Computing,
accessed May 19, 2025,
https://www.scalecomputing.com/resources/what-is-a-gpu-cluster

3.​ Scalable Architecture Patterns for High-Growth Startups That Every Business
Owner Should Know Today - Full Scale, accessed May 19, 2025,
https://fullscale.io/blog/scalable-architecture-patterns/

4.​ How to Build Great Machine Learning Infrastructure - Anyscale, accessed May 19,
2025, https://www.anyscale.com/glossary/ml-machine-learning-infrastructure

5.​ AI Networking Center | Artificial Intelligence AI technology - Arista, accessed May
19, 2025, https://www.arista.com/en/solutions/ai-networking

6.​ What are GPU clusters and how to choose yours? - Nebius, accessed May 19,
2025,
https://nebius.com/blog/posts/what-are-compute-clusters-and-how-to-choose-
yours

7.​ Kubernetes GPU Resource Management Best Practices - PerfectScale, accessed
May 19, 2025, https://www.perfectscale.io/blog/kubernetes-gpu

8.​ Artifact Stores | MLflow, accessed May 19, 2025,

https://lakefs.io/blog/machine-learning-architecture/
https://www.scalecomputing.com/resources/what-is-a-gpu-cluster
https://fullscale.io/blog/scalable-architecture-patterns/
https://www.anyscale.com/glossary/ml-machine-learning-infrastructure
https://www.arista.com/en/solutions/ai-networking
https://nebius.com/blog/posts/what-are-compute-clusters-and-how-to-choose-yours
https://nebius.com/blog/posts/what-are-compute-clusters-and-how-to-choose-yours
https://www.perfectscale.io/blog/kubernetes-gpu

https://mlflow.org/docs/latest/tracking/artifacts-stores/
9.​ What is the best way to do data version control for Machine Learning models -

MATLAB Answers - MathWorks, accessed May 19, 2025,
https://www.mathworks.com/matlabcentral/answers/2067961-what-is-the-best-
way-to-do-data-version-control-for-machine-learning-models

10.​What are the best practices for configuring NVIDIA H100 GPUs for machine
learning workloads? - Massed Compute, accessed May 19, 2025,
https://massedcompute.com/faq-answers/?question=What%20are%20the%20be
st%20practices%20for%20configuring%20NVIDIA%20H100%20GPUs%20for%2
0machine%20learning%20workloads?

11.​GPU machine types | Compute Engine Documentation - Google Cloud, accessed
May 19, 2025, https://cloud.google.com/compute/docs/gpus

12.​Best practices for competitive inference optimization on AMD Instinct™ MI300X
GPUs, accessed May 19, 2025,
https://rocm.blogs.amd.com/artificial-intelligence/LLM_Inference/README.html

13.​AMD Instinct MI300X workload optimization — ROCm Documentation, accessed
May 19, 2025,
https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference-optimization/
workload.html

14.​How do I properly install and configure the NVIDIA A100 GPU in a data center
environment?, accessed May 19, 2025,
https://massedcompute.com/faq-answers/?question=How%20do%20I%20prope
rly%20install%20and%20configure%20the%20NVIDIA%20A100%20GPU%20in%
20a%20data%20center%20environment?

15.​Magnum IO Software Developer Kit (SDK), accessed May 19, 2025,
https://developer.nvidia.com/magnum-io

16.​Magnum IO Software Stack for Accelerated Data Centers - NVIDIA, accessed
May 19, 2025, https://www.nvidia.com/en-us/data-center/magnum-io/

17.​NVLink & NVSwitch: Fastest HPC Data Center Platform | NVIDIA, accessed May 19,
2025, https://www.nvidia.com/en-us/data-center/nvlink/

18.​An Overview of NVIDIA NVLink - FS.com, accessed May 19, 2025,
https://www.fs.com/de-en/blog/an-overview-of-nvidia-nvlink-2918.html

19.​About GPUs in Google Kubernetes Engine (GKE), accessed May 19, 2025,
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus

20.​Slurm management system - Introduction - Together AI, accessed May 19, 2025,
https://docs.together.ai/docs/slurm

21.​Understanding Slurm GPU Management - Run:ai, accessed May 19, 2025,
https://www.run.ai/guides/slurm/understanding-slurm-gpu-management

22.​Distributed Machine Learning on Akash Network With Ray, accessed May 19,
2025, https://akash.network/docs/guides/machine-learning/ray/

23.​What is Ray on Databricks?, accessed May 19, 2025,
https://docs.databricks.com/gcp/en/machine-learning/ray/

24.​Kubeflow vs MLflow vs ZenML: Which MLOps Platform Is the Best ..., accessed

https://mlflow.org/docs/latest/tracking/artifacts-stores/
https://www.mathworks.com/matlabcentral/answers/2067961-what-is-the-best-way-to-do-data-version-control-for-machine-learning-models
https://www.mathworks.com/matlabcentral/answers/2067961-what-is-the-best-way-to-do-data-version-control-for-machine-learning-models
https://massedcompute.com/faq-answers/?question=What+are+the+best+practices+for+configuring+NVIDIA+H100+GPUs+for+machine+learning+workloads?
https://massedcompute.com/faq-answers/?question=What+are+the+best+practices+for+configuring+NVIDIA+H100+GPUs+for+machine+learning+workloads?
https://massedcompute.com/faq-answers/?question=What+are+the+best+practices+for+configuring+NVIDIA+H100+GPUs+for+machine+learning+workloads?
https://cloud.google.com/compute/docs/gpus
https://rocm.blogs.amd.com/artificial-intelligence/LLM_Inference/README.html
https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference-optimization/workload.html
https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference-optimization/workload.html
https://massedcompute.com/faq-answers/?question=How+do+I+properly+install+and+configure+the+NVIDIA+A100+GPU+in+a+data+center+environment?
https://massedcompute.com/faq-answers/?question=How+do+I+properly+install+and+configure+the+NVIDIA+A100+GPU+in+a+data+center+environment?
https://massedcompute.com/faq-answers/?question=How+do+I+properly+install+and+configure+the+NVIDIA+A100+GPU+in+a+data+center+environment?
https://developer.nvidia.com/magnum-io
https://www.nvidia.com/en-us/data-center/magnum-io/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.fs.com/de-en/blog/an-overview-of-nvidia-nvlink-2918.html
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://docs.together.ai/docs/slurm
https://www.run.ai/guides/slurm/understanding-slurm-gpu-management
https://akash.network/docs/guides/machine-learning/ray/
https://docs.databricks.com/gcp/en/machine-learning/ray/

May 19, 2025, https://www.zenml.io/blog/kubeflow-vs-mlflow
25.​Top 10 MLOps Tools in 2025 to Streamline Your ML Workflow - Futurense,

accessed May 19, 2025,
https://futurense.com/uni-blog/top-10-mlops-tools-in-2025

26.​MLflow Tracking, accessed May 19, 2025, https://mlflow.org/docs/latest/tracking/
27.​RDMA RoCEv2 for AI workloads on Google Cloud, accessed May 19, 2025,

https://cloud.google.com/blog/products/networking/rdma-rocev2-for-ai-workloa
ds-on-google-cloud

28.​How InfiniBand Enhances Machine Learning and AI Workloads | Orhan Ergun,
accessed May 19, 2025,
https://orhanergun.net/how-infiniband-enhances-machine-learning-and-ai-workl
oads

29.​RDMA over Converged Ethernet - Wikipedia, accessed May 19, 2025,
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet

30.​Exploring Ultra Ethernet for AI Networks - UEC Presentation Video on YouTube -
FiberMall, accessed May 19, 2025,
https://www.fibermall.com/blog/ultra-ethernet.htm

31.​Why InfiniBand vs Ethernet matters for Data Centers? - Voltage Park, accessed
May 19, 2025,
https://www.voltagepark.com/blog/why-infiniband-vs-ethernet-matters-for-data
-centers

32.​InfiniBand vs. Ethernet debate intensifies amid AI explosion - The Register,
accessed May 19, 2025,
https://www.theregister.com/2024/01/24/ai_networks_infiniband_vs_ethernet/

33.​How Ultra Ethernet and UALink Enable High-Performance, Scalable AI Networks -
Synopsys, accessed May 19, 2025,
https://www.synopsys.com/articles/ultra-ethernet-ualink-ai-networks.html

34.​Optimizing AI GPU Clusters: Network, Scale, and Connectivity Solutions |
NADDOD, accessed May 19, 2025,
https://www.naddod.com/blog/optimizing-ai-gpu-clusters-network-and-scale

35.​What is the recommended network topology for an NVIDIA GPU-accelerated
HPC cluster?, accessed May 19, 2025,
https://massedcompute.com/faq-answers/?question=What%20is%20the%20rec
ommended%20network%20topology%20for%20an%20NVIDIA%20GPU-acceler
ated%20HPC%20cluster?

36.​Advanced Networks for Artificial Intelligence and Machine Learning Computing |
AFL Hyperscale, accessed May 19, 2025,
https://www.aflhyperscale.com/wp-content/uploads/2024/10/Advanced-Network
s-for-Artificial-Intelligence-and-Machine-Learning-Computing-White-Paper.pdf

37.​Clos network - Wikipedia, accessed May 19, 2025,
https://en.wikipedia.org/wiki/Clos_network

38.​Dragonfly topology - Glenn K. Lockwood, accessed May 19, 2025,
https://www.glennklockwood.com/garden/dragonfly

https://www.zenml.io/blog/kubeflow-vs-mlflow
https://futurense.com/uni-blog/top-10-mlops-tools-in-2025
https://mlflow.org/docs/latest/tracking/
https://cloud.google.com/blog/products/networking/rdma-rocev2-for-ai-workloads-on-google-cloud
https://cloud.google.com/blog/products/networking/rdma-rocev2-for-ai-workloads-on-google-cloud
https://orhanergun.net/how-infiniband-enhances-machine-learning-and-ai-workloads
https://orhanergun.net/how-infiniband-enhances-machine-learning-and-ai-workloads
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
https://www.fibermall.com/blog/ultra-ethernet.htm
https://www.voltagepark.com/blog/why-infiniband-vs-ethernet-matters-for-data-centers
https://www.voltagepark.com/blog/why-infiniband-vs-ethernet-matters-for-data-centers
https://www.theregister.com/2024/01/24/ai_networks_infiniband_vs_ethernet/
https://www.synopsys.com/articles/ultra-ethernet-ualink-ai-networks.html
https://www.naddod.com/blog/optimizing-ai-gpu-clusters-network-and-scale
https://massedcompute.com/faq-answers/?question=What+is+the+recommended+network+topology+for+an+NVIDIA+GPU-accelerated+HPC+cluster?
https://massedcompute.com/faq-answers/?question=What+is+the+recommended+network+topology+for+an+NVIDIA+GPU-accelerated+HPC+cluster?
https://massedcompute.com/faq-answers/?question=What+is+the+recommended+network+topology+for+an+NVIDIA+GPU-accelerated+HPC+cluster?
https://www.aflhyperscale.com/wp-content/uploads/2024/10/Advanced-Networks-for-Artificial-Intelligence-and-Machine-Learning-Computing-White-Paper.pdf
https://www.aflhyperscale.com/wp-content/uploads/2024/10/Advanced-Networks-for-Artificial-Intelligence-and-Machine-Learning-Computing-White-Paper.pdf
https://en.wikipedia.org/wiki/Clos_network
https://www.glennklockwood.com/garden/dragonfly

39.​Benefits of Fat-Tree Topology vs Dragonfly Topology in InfiniBand Network for AI
and HPC Workloads - Massed Compute, accessed May 19, 2025,
https://massedcompute.com/faq-answers/?question=What%20are%20the%20be
nefits%20of%20using%20a%20fat-tree%20topology%20versus%20a%20drago
nfly%20topology%20in%20an%20InfiniBand%20network%20for%20AI%20and%
20HPC%20workloads?

40.​Automated storage tiering using machine learning | SNIA | Experts on Data,
accessed May 19, 2025,
https://snia.org/educational-library/automated-storage-tiering-using-machine-lea
rning-2018

41.​Intelligent storage system with machine learning - CS229 - Stanford University,
accessed May 19, 2025,
https://cs229.stanford.edu/proj2016/report/Yen-IntelligentStorageSystemWithMac
hineLearning-report.pdf

42.​Asking for help resolving bottlenecks for a small/medium GPU cluster : r/HPC -
Reddit, accessed May 19, 2025,
https://www.reddit.com/r/HPC/comments/1kbvxxv/asking_for_help_resolving_bott
lenecks_for_a/

43.​Deploying ZFS Scratch Storage for NVMe on Azure Kubernetes ..., accessed May
19, 2025,
https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblo
g/deploying-zfs-scratch-storage-for-nvme-on-azure-kubernetes-service-aks/43
63551

44.​Managed Lustre | Google Cloud, accessed May 19, 2025,
https://cloud.google.com/products/managed-lustre

45.​IBM Storage Scale, accessed May 19, 2025,
https://www.ibm.com/products/storage-scale

46.​How to Build High-Performance NFS Storage with xiRAID Backend and RDMA
Access, accessed May 19, 2025,
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-ba
ckend-and-rdma-access/

47.​Silk AI Enablement:, accessed May 19, 2025,
https://silk.us/wp-content/uploads/2025/01/Silk-AI-Enablement.pdf

48.​Generally Available: Fully Managed Lustre File Storage in the Cloud - Oracle
Blogs, accessed May 19, 2025,
https://blogs.oracle.com/cloud-infrastructure/post/fully-managed-lustre-file-stor
age-in-the-cloud

49.​Amazon FSx for Lustre now supports Elastic Fabric Adapter and NVIDIA
GPUDirect Storage, accessed May 19, 2025,
https://aws.amazon.com/about-aws/whats-new/2024/11/amazon-fsx-lustre-elasti
c-fabric-adapter-nvidia-gpudirect-storage/

50.​Amazon FSx for Lustre increases throughput to GPU instances by up ..., accessed
May 19, 2025,

https://massedcompute.com/faq-answers/?question=What+are+the+benefits+of+using+a+fat-tree+topology+versus+a+dragonfly+topology+in+an+InfiniBand+network+for+AI+and+HPC+workloads?
https://massedcompute.com/faq-answers/?question=What+are+the+benefits+of+using+a+fat-tree+topology+versus+a+dragonfly+topology+in+an+InfiniBand+network+for+AI+and+HPC+workloads?
https://massedcompute.com/faq-answers/?question=What+are+the+benefits+of+using+a+fat-tree+topology+versus+a+dragonfly+topology+in+an+InfiniBand+network+for+AI+and+HPC+workloads?
https://massedcompute.com/faq-answers/?question=What+are+the+benefits+of+using+a+fat-tree+topology+versus+a+dragonfly+topology+in+an+InfiniBand+network+for+AI+and+HPC+workloads?
https://snia.org/educational-library/automated-storage-tiering-using-machine-learning-2018
https://snia.org/educational-library/automated-storage-tiering-using-machine-learning-2018
https://cs229.stanford.edu/proj2016/report/Yen-IntelligentStorageSystemWithMachineLearning-report.pdf
https://cs229.stanford.edu/proj2016/report/Yen-IntelligentStorageSystemWithMachineLearning-report.pdf
https://www.reddit.com/r/HPC/comments/1kbvxxv/asking_for_help_resolving_bottlenecks_for_a/
https://www.reddit.com/r/HPC/comments/1kbvxxv/asking_for_help_resolving_bottlenecks_for_a/
https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/deploying-zfs-scratch-storage-for-nvme-on-azure-kubernetes-service-aks/4363551
https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/deploying-zfs-scratch-storage-for-nvme-on-azure-kubernetes-service-aks/4363551
https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/deploying-zfs-scratch-storage-for-nvme-on-azure-kubernetes-service-aks/4363551
https://cloud.google.com/products/managed-lustre
https://www.ibm.com/products/storage-scale
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://silk.us/wp-content/uploads/2025/01/Silk-AI-Enablement.pdf
https://blogs.oracle.com/cloud-infrastructure/post/fully-managed-lustre-file-storage-in-the-cloud
https://blogs.oracle.com/cloud-infrastructure/post/fully-managed-lustre-file-storage-in-the-cloud
https://aws.amazon.com/about-aws/whats-new/2024/11/amazon-fsx-lustre-elastic-fabric-adapter-nvidia-gpudirect-storage/
https://aws.amazon.com/about-aws/whats-new/2024/11/amazon-fsx-lustre-elastic-fabric-adapter-nvidia-gpudirect-storage/

https://aws.amazon.com/blogs/aws/amazon-fsx-for-lustre-unlocks-full-network-
bandwidth-and-gpu-performance/

51.​BeeGFS® at, accessed May 19, 2025,
https://www.beegfs.io/docs/BeeGFS_UCSB_Whitepaper.pdf

52.​AI & Deep Learning Solution Brief | ThinkparQ, accessed May 19, 2025,
https://thinkparq.com/wp-content/uploads/2019/08/AI-Solution-Brief.pdf

53.​IBM Storage Scale System, accessed May 19, 2025,
https://www.ibm.com/products/storage-scale-system

54.​GPUDirect Storage support for IBM Storage Scale, accessed May 19, 2025,
https://www.ibm.com/docs/en/storage-scale/5.2.1?topic=architecture-gpudirect-
storage-support-storage-scale

55.​Installing GPUDirect Storage for IBM Storage Scale, accessed May 19, 2025,
https://www.ibm.com/docs/en/storage-scale/5.2.1?topic=installing-gpudirect-stor
age-storage-scale

56.​NVIDIA GPUDirect Storage: 4 Key Features, Ecosystem & Use Cases - Cloudian,
accessed May 19, 2025,
https://cloudian.com/guides/data-security/nvidia-gpudirect-storage-4-key-featur
es-ecosystem-use-cases/

57.​NVIDIA® GPUDirect® Storage - Digital Assets, accessed May 19, 2025,
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/publi
c/western-digital/collateral/tech-brief/tech-brief-nvidia-gpu-direct-openflex-dat
a24-4000.pdf

58.​Can I use NVIDIA's GPUDirect Storage to transfer data between GPUs and a
parallel file system? - Massed Compute, accessed May 19, 2025,
https://massedcompute.com/faq-answers/?question=Can+I+use+NVIDIA%27s+G
PUDirect+Storage+to+transfer+data+between+GPUs+and+a+parallel+file+syste
m%3F

59.​Quantum unveils highly parallel file system client for Myriad - SDx Central,
accessed May 19, 2025,
https://www.sdxcentral.com/news/quantum-unveils-highly-parallel-file-system-cli
ent-for-myriad/

60.​S3 Compatible Storage: Key Attributes, Benefits, Use Cases - Object First,
accessed May 19, 2025,
https://objectfirst.com/guides/data-storage/s3-compatible-storage-everything-y
ou-need-to-know/

61.​S3 Object Storage: The Ultimate Solution For AI/ML Data Lakes - StoneFly, Inc.,
accessed May 19, 2025,
https://stonefly.com/blog/s3-object-storage-the-ultimate-solution-for-ai-ml-data
-lakes/

62.​Machine Learning Model Training with Alluxio: Part 2 - Comparable Analysis,
accessed May 19, 2025,
https://www.alluxio.io/blog/machine-learning-model-training-with-alluxio-part-2-
comparable-analysis

https://aws.amazon.com/blogs/aws/amazon-fsx-for-lustre-unlocks-full-network-bandwidth-and-gpu-performance/
https://aws.amazon.com/blogs/aws/amazon-fsx-for-lustre-unlocks-full-network-bandwidth-and-gpu-performance/
https://www.beegfs.io/docs/BeeGFS_UCSB_Whitepaper.pdf
https://thinkparq.com/wp-content/uploads/2019/08/AI-Solution-Brief.pdf
https://www.ibm.com/products/storage-scale-system
https://www.ibm.com/docs/en/storage-scale/5.2.1?topic=architecture-gpudirect-storage-support-storage-scale
https://www.ibm.com/docs/en/storage-scale/5.2.1?topic=architecture-gpudirect-storage-support-storage-scale
https://www.ibm.com/docs/en/storage-scale/5.2.1?topic=installing-gpudirect-storage-storage-scale
https://www.ibm.com/docs/en/storage-scale/5.2.1?topic=installing-gpudirect-storage-storage-scale
https://cloudian.com/guides/data-security/nvidia-gpudirect-storage-4-key-features-ecosystem-use-cases/
https://cloudian.com/guides/data-security/nvidia-gpudirect-storage-4-key-features-ecosystem-use-cases/
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-nvidia-gpu-direct-openflex-data24-4000.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-nvidia-gpu-direct-openflex-data24-4000.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-nvidia-gpu-direct-openflex-data24-4000.pdf
https://massedcompute.com/faq-answers/?question=Can+I+use+NVIDIA's+GPUDirect+Storage+to+transfer+data+between+GPUs+and+a+parallel+file+system?
https://massedcompute.com/faq-answers/?question=Can+I+use+NVIDIA's+GPUDirect+Storage+to+transfer+data+between+GPUs+and+a+parallel+file+system?
https://massedcompute.com/faq-answers/?question=Can+I+use+NVIDIA's+GPUDirect+Storage+to+transfer+data+between+GPUs+and+a+parallel+file+system?
https://www.sdxcentral.com/news/quantum-unveils-highly-parallel-file-system-client-for-myriad/
https://www.sdxcentral.com/news/quantum-unveils-highly-parallel-file-system-client-for-myriad/
https://objectfirst.com/guides/data-storage/s3-compatible-storage-everything-you-need-to-know/
https://objectfirst.com/guides/data-storage/s3-compatible-storage-everything-you-need-to-know/
https://stonefly.com/blog/s3-object-storage-the-ultimate-solution-for-ai-ml-data-lakes/
https://stonefly.com/blog/s3-object-storage-the-ultimate-solution-for-ai-ml-data-lakes/
https://www.alluxio.io/blog/machine-learning-model-training-with-alluxio-part-2-comparable-analysis
https://www.alluxio.io/blog/machine-learning-model-training-with-alluxio-part-2-comparable-analysis

63.​Accelerating Data Loading in Large-Scale ML Training With Ray and Alluxio,
accessed May 19, 2025,
https://www.alluxio.io/blog/accelerating-data-loading-in-large-scale-ml-training-
with-ray-and-alluxio

64.​A Deep Dive into Caching in Presto - Alluxio, accessed May 19, 2025,
https://www.alluxio.io/blog/a-deep-dive-into-caching-in-presto

65.​A Journey Towards Data Locality on Cloud for Machine Learning and AI - Alluxio,
accessed May 19, 2025,
https://www.alluxio.io/blog/a-journey-towards-data-locality-on-cloud-for-machin
e-learning-and-ai

66.​AI + Machine Learning File Storage Solution - JuiceFS, accessed May 19, 2025,
https://juicefs.com/en/artificial-intelligence

67.​JuiceFS - Open Source Distributed POSIX File System for Cloud, accessed May
19, 2025, https://juicefs.com/en/

68.​DeepSeek 3FS vs. JuiceFS: Architectures, Features, and Innovations in AI Storage,
accessed May 19, 2025,
https://juicefs.com/en/blog/engineering/deepseek-3fs-vs-juicefs-architecture-fea
ture

69.​Flash Memory vs. RAM | Pure Storage Blog, accessed May 19, 2025,
https://blog.purestorage.com/purely-educational/flash-memory-vs-ram/

70.​SoftPerfect RAM Disk : high-performance RAM drive for Windows and macOS,
accessed May 19, 2025, https://www.softperfect.com/products/ramdisk/

71.​Backend Stores - MLflow, accessed May 19, 2025,
https://mlflow.org/docs/latest/tracking/backend-stores

72.​XFS vs. Ext4: Which Linux File System Is Better? | Pure Storage Blog, accessed May
19, 2025,
https://blog.purestorage.com/purely-educational/xfs-vs-ext4-which-linux-file-sys
tem-is-better/

73.​Understanding Linux File Systems: EXT4, XFS, BTRFS, and ZFS - Writeup DB,
accessed May 19, 2025,
https://www.writeup-db.com/understanding-linux-file-systems-ext4-xfs-btrfs-an
d-zfs/

74.​What is Apache Spark ETL? Overview, Benefits & Use Cases - CData Software,
accessed May 19, 2025, https://www.cdata.com/blog/what-is-apache-spark-etl

75.​Ray vs Dask vs Apache Spark™ — Comparing Data Science & Machine Learning
Engines, accessed May 19, 2025,
https://www.onehouse.ai/blog/apache-spark-vs-ray-vs-dask-comparing-data-sci
ence-machine-learning-engines

76.​accessed December 31, 1969,
https://www.cdata.com/blog/what-is-apache-spark-etl/

77.​Apache Spark + Kafka – Your Big Data Pipeline - Ksolves, accessed May 19, 2025,
https://www.ksolves.com/blog/big-data/apache-spark-kafka-your-big-data-pipel
ine

https://www.alluxio.io/blog/accelerating-data-loading-in-large-scale-ml-training-with-ray-and-alluxio
https://www.alluxio.io/blog/accelerating-data-loading-in-large-scale-ml-training-with-ray-and-alluxio
https://www.alluxio.io/blog/a-deep-dive-into-caching-in-presto
https://www.alluxio.io/blog/a-journey-towards-data-locality-on-cloud-for-machine-learning-and-ai
https://www.alluxio.io/blog/a-journey-towards-data-locality-on-cloud-for-machine-learning-and-ai
https://juicefs.com/en/artificial-intelligence
https://juicefs.com/en/
https://juicefs.com/en/blog/engineering/deepseek-3fs-vs-juicefs-architecture-feature
https://juicefs.com/en/blog/engineering/deepseek-3fs-vs-juicefs-architecture-feature
https://blog.purestorage.com/purely-educational/flash-memory-vs-ram/
https://www.softperfect.com/products/ramdisk/
https://mlflow.org/docs/latest/tracking/backend-stores
https://blog.purestorage.com/purely-educational/xfs-vs-ext4-which-linux-file-system-is-better/
https://blog.purestorage.com/purely-educational/xfs-vs-ext4-which-linux-file-system-is-better/
https://www.writeup-db.com/understanding-linux-file-systems-ext4-xfs-btrfs-and-zfs/
https://www.writeup-db.com/understanding-linux-file-systems-ext4-xfs-btrfs-and-zfs/
https://www.cdata.com/blog/what-is-apache-spark-etl
https://www.onehouse.ai/blog/apache-spark-vs-ray-vs-dask-comparing-data-science-machine-learning-engines
https://www.onehouse.ai/blog/apache-spark-vs-ray-vs-dask-comparing-data-science-machine-learning-engines
https://www.cdata.com/blog/what-is-apache-spark-etl/
https://www.ksolves.com/blog/big-data/apache-spark-kafka-your-big-data-pipeline
https://www.ksolves.com/blog/big-data/apache-spark-kafka-your-big-data-pipeline

78.​Developing End-to-End Data Science Pipelines with Data Ingestion, Processing,
and Visualization - KDnuggets, accessed May 19, 2025,
https://www.kdnuggets.com/developing-end-to-end-data-science-pipelines-wit
h-data-ingestion-processing-and-visualization

79.​Generative AI Operations for Organizations with MLOps Investments - Azure
Architecture Center | Microsoft Learn, accessed May 19, 2025,
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/genaiops-for-ml
ops

80.​M29 - Distributed Data Loading - DTU-MLOps, accessed May 19, 2025,
https://skaftenicki.github.io/dtu_mlops/s9_scalable_applications/data_loading/

81.​Ray Data: Scalable Datasets for ML — Ray 2.46.0 - Ray Docs, accessed May 19,
2025, https://docs.ray.io/en/latest/data/data.html

82.​Data Loading and Preprocessing — Ray 2.46.0 - Ray Docs, accessed May 19,
2025,
https://docs.ray.io/en/latest/train/user-guides/data-loading-preprocessing.html

83.​Preprocessing — dask-ml 2025.1.1 documentation, accessed May 19, 2025,
https://ml.dask.org/preprocessing.html

84.​Building End-to-End Data Pipelines with Dask - KDnuggets, accessed May 19,
2025,
https://www.kdnuggets.com/building-end-to-end-data-pipelines-with-dask

85.​Using Dask on Ray — Ray 2.46.0 - Ray Docs, accessed May 19, 2025,
https://docs.ray.io/en/latest/ray-more-libs/dask-on-ray.html

86.​cuFile API Reference Guide :: CUDA Toolkit Documentation - NVIDIA Docs Hub,
accessed May 19, 2025,
https://docs.nvidia.com/cuda/archive/11.7.1/cufile-api/index.html

87.​Magnum IO GPUDirect Storage | NVIDIA Developer, accessed May 19, 2025,
https://developer.nvidia.com/gpudirect-storage

88.​NVIDIA GPUDirect Storage and MinIO AIStor: Unlocking Efficiency for
GPU-Powered AI Workloads, accessed May 19, 2025,
https://blog.min.io/nvidia-gpudirect-storage-and-aistor/

89.​NVIDIA/gds-nvidia-fs: NVIDIA GPUDirect Storage Driver - GitHub, accessed May
19, 2025, https://github.com/NVIDIA/gds-nvidia-fs

90.​accessed December 31, 1969,
https://docs.nvidia.com/cuda/cufile-driver/index.html

91.​Connectors that enable File-Based Storage | Storage Connectors for the PyTorch
AI framework | Dell Technologies Info Hub, accessed May 19, 2025,
https://infohub.delltechnologies.com/l/storage-connectors-for-the-pytorch-ai-fr
amework/connectors-that-enable-file-based-storage/

92.​Accelerate AI & Machine Learning Workflows | NVIDIA Run:ai, accessed May 19,
2025, https://www.run.ai/guides/ai-open-source-projects/nvidia-dali

93.​rapidsai/kvikio: KvikIO - High Performance File IO - GitHub, accessed May 19,
2025, https://github.com/rapidsai/kvikio

94.​Ecosystem | RAPIDS | RAPIDS | GPU Accelerated Data Science, accessed May 19,

https://www.kdnuggets.com/developing-end-to-end-data-science-pipelines-with-data-ingestion-processing-and-visualization
https://www.kdnuggets.com/developing-end-to-end-data-science-pipelines-with-data-ingestion-processing-and-visualization
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/genaiops-for-mlops
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/genaiops-for-mlops
https://skaftenicki.github.io/dtu_mlops/s9_scalable_applications/data_loading/
https://docs.ray.io/en/latest/data/data.html
https://docs.ray.io/en/latest/train/user-guides/data-loading-preprocessing.html
https://ml.dask.org/preprocessing.html
https://www.kdnuggets.com/building-end-to-end-data-pipelines-with-dask
https://docs.ray.io/en/latest/ray-more-libs/dask-on-ray.html
https://docs.nvidia.com/cuda/archive/11.7.1/cufile-api/index.html
https://developer.nvidia.com/gpudirect-storage
https://blog.min.io/nvidia-gpudirect-storage-and-aistor/
https://github.com/NVIDIA/gds-nvidia-fs
https://docs.nvidia.com/cuda/cufile-driver/index.html
https://infohub.delltechnologies.com/l/storage-connectors-for-the-pytorch-ai-framework/connectors-that-enable-file-based-storage/
https://infohub.delltechnologies.com/l/storage-connectors-for-the-pytorch-ai-framework/connectors-that-enable-file-based-storage/
https://www.run.ai/guides/ai-open-source-projects/nvidia-dali
https://github.com/rapidsai/kvikio

2025, https://rapids.ai/ecosystem/
95.​Feature Request: NVIDIA GDS Support for PyTorch IterableDataset &

Checkpointing - data, accessed May 19, 2025,
https://discuss.pytorch.org/t/feature-request-nvidia-gds-support-for-pytorch-ite
rabledataset-checkpointing/211945

96.​Nvidia-dali-tf-plugin - General - Hailo Community, accessed May 19, 2025,
https://community.hailo.ai/t/nvidia-dali-tf-plugin/12668

97.​Memory management when using GPU in TensorFlow - Stack Overflow, accessed
May 19, 2025,
https://stackoverflow.com/questions/42307975/memory-management-when-usi
ng-gpu-in-tensorflow

98.​TensorFlow Plugin API reference — NVIDIA DALI 1.9.0 documentation, accessed
May 19, 2025,
https://docs.nvidia.com/deeplearning/dali/archives/dali_190/user-guide/docs/plugi
ns/tensorflow_plugin_api.html

99.​What is ML Reproducibility - MLOps | MLOps Wiki - Censius AI, accessed May 19,
2025, https://censius.ai/wiki/ml-reproducibility

100.​ 13 ML Operations - Machine Learning Systems, accessed May 19, 2025,
https://mlsysbook.ai/contents/core/ops/ops.html

101.​ 7.0. Reproducibility - MLOps Coding Course, accessed May 19, 2025,
https://mlops-coding-course.fmind.dev/7.%20Observability/0.%20Reproducibility.
html

102.​ MLOps Principles, accessed May 19, 2025,
https://ml-ops.org/content/mlops-principles

103.​ Scalable AI Workflows: MLOps Tools Guide - Pronod Bharatiya's Blog,
accessed May 19, 2025,
https://data-intelligence.hashnode.dev/mlops-open-source-guide?source=more_
articles_bottom_blogs

104.​ Reference Architecture: set up MLflow Remote Tracking Server on ...,
accessed May 19, 2025,
https://blog.ovhcloud.com/mlflow-remote-tracking-server-ovhcloud-databases-
object-storage-ai-solutions/

105.​ Accelerate AI & Machine Learning Workflows | NVIDIA Run:ai, accessed May
19, 2025,
https://www.run.ai/guides/kubernetes-architecture/kubeflow-pipelines-the-basic
s-and-a-quick-tutorial

106.​ Manage Kubeflow pipeline templates | Artifact Registry documentation -
Google Cloud, accessed May 19, 2025,
https://cloud.google.com/artifact-registry/docs/kfp

107.​ Pipeline Root | Kubeflow, accessed May 19, 2025,
https://www.kubeflow.org/docs/components/pipelines/concepts/pipeline-root/

108.​ Object Store Configuration - Kubeflow, accessed May 19, 2025,
https://www.kubeflow.org/docs/components/pipelines/operator-guides/configure

https://rapids.ai/ecosystem/
https://discuss.pytorch.org/t/feature-request-nvidia-gds-support-for-pytorch-iterabledataset-checkpointing/211945
https://discuss.pytorch.org/t/feature-request-nvidia-gds-support-for-pytorch-iterabledataset-checkpointing/211945
https://community.hailo.ai/t/nvidia-dali-tf-plugin/12668
https://stackoverflow.com/questions/42307975/memory-management-when-using-gpu-in-tensorflow
https://stackoverflow.com/questions/42307975/memory-management-when-using-gpu-in-tensorflow
https://docs.nvidia.com/deeplearning/dali/archives/dali_190/user-guide/docs/plugins/tensorflow_plugin_api.html
https://docs.nvidia.com/deeplearning/dali/archives/dali_190/user-guide/docs/plugins/tensorflow_plugin_api.html
https://censius.ai/wiki/ml-reproducibility
https://mlsysbook.ai/contents/core/ops/ops.html
https://mlops-coding-course.fmind.dev/7.%20Observability/0.%20Reproducibility.html
https://mlops-coding-course.fmind.dev/7.%20Observability/0.%20Reproducibility.html
https://ml-ops.org/content/mlops-principles
https://data-intelligence.hashnode.dev/mlops-open-source-guide?source=more_articles_bottom_blogs
https://data-intelligence.hashnode.dev/mlops-open-source-guide?source=more_articles_bottom_blogs
https://blog.ovhcloud.com/mlflow-remote-tracking-server-ovhcloud-databases-object-storage-ai-solutions/
https://blog.ovhcloud.com/mlflow-remote-tracking-server-ovhcloud-databases-object-storage-ai-solutions/
https://www.run.ai/guides/kubernetes-architecture/kubeflow-pipelines-the-basics-and-a-quick-tutorial
https://www.run.ai/guides/kubernetes-architecture/kubeflow-pipelines-the-basics-and-a-quick-tutorial
https://cloud.google.com/artifact-registry/docs/kfp
https://www.kubeflow.org/docs/components/pipelines/concepts/pipeline-root/
https://www.kubeflow.org/docs/components/pipelines/operator-guides/configure-object-store/

-object-store/
109.​ Remote Storage | Data Version Control · DVC, accessed May 19, 2025,

https://dvc.org/doc/user-guide/data-management/remote-storage
110.​ Effortless Data and Model Versioning with DVC, accessed May 19, 2025,

https://www.dasca.org/world-of-data-science/article/effortless-data-and-model-
versioning-with-dvc

111.​ Versioning Data in MLOps with DVC (Data Version Control) - Full Stack Data
Science, accessed May 19, 2025,
https://fullstackdatascience.com/blogs/versioning-data-in-mlops-with-dvc-data-
version-control-xm3mu5

112.​ Machine Learning Model Versioning: Top Tools & Best Practices, accessed May
19, 2025, https://lakefs.io/blog/model-versioning/

113.​ MLflow for gen AI agent and ML model lifecycle - Databricks Documentation,
accessed May 19, 2025, https://docs.databricks.com/aws/en/mlflow/

114.​ MLflow Model Registry, accessed May 19, 2025,
https://mlflow.org/docs/latest/model-registry/

115.​ Deploy MLflow Model as a Local Inference Server, accessed May 19, 2025,
https://mlflow.org/docs/latest/deployment/deploy-model-locally/

116.​ DVC vs Git vs Git LFS: ML Reproducibility - Censius, accessed May 19, 2025,
https://censius.ai/blogs/dvc-vs-git-and-git-lfs-in-machine-learning-reproducibilit
y

117.​ Hyperparameter tuning - Databricks Documentation, accessed May 19, 2025,
https://docs.databricks.com/gcp/en/machine-learning/automl-hyperparam-tuning

118.​ Hyperparameter tuning | Databricks Documentation, accessed May 19, 2025,
https://docs.databricks.com/gcp/en/machine-learning/automl-hyperparam-tuning
/

119.​ Ray Tune: Distributed Hyperparameter Optimization at Scale | RayTune-dcgan
– Weights & Biases - Wandb, accessed May 19, 2025,
https://wandb.ai/authors/RayTune-dcgan/reports/Ray-Tune-Distributed-Hyperpar
ameter-Optimization-at-Scale--VmlldzoyMDEwNDY

120.​ Hyperparameter Tuning with Ray Tune — Ray 2.46.0 - Ray Docs, accessed May
19, 2025,
https://docs.ray.io/en/latest/train/user-guides/hyperparameter-optimization.html

121.​ Running Distributed Experiments with Ray Tune — Ray 2.46.0 - Ray Docs,
accessed May 19, 2025,
https://docs.ray.io/en/latest/tune/tutorials/tune-distributed.html

122.​ Hyperparameter tuning with Optuna - Databricks Documentation, accessed
May 19, 2025,
https://docs.databricks.com/aws/en/machine-learning/automl-hyperparam-tuning
/optuna

123.​ Distributed hyperparameter tuning with Optuna, Neon Postgres, and
Kubernetes, accessed May 19, 2025,
https://neon.tech/guides/optuna-hyperprameter-kubernetes

https://www.kubeflow.org/docs/components/pipelines/operator-guides/configure-object-store/
https://dvc.org/doc/user-guide/data-management/remote-storage
https://www.dasca.org/world-of-data-science/article/effortless-data-and-model-versioning-with-dvc
https://www.dasca.org/world-of-data-science/article/effortless-data-and-model-versioning-with-dvc
https://fullstackdatascience.com/blogs/versioning-data-in-mlops-with-dvc-data-version-control-xm3mu5
https://fullstackdatascience.com/blogs/versioning-data-in-mlops-with-dvc-data-version-control-xm3mu5
https://lakefs.io/blog/model-versioning/
https://docs.databricks.com/aws/en/mlflow/
https://mlflow.org/docs/latest/model-registry/
https://mlflow.org/docs/latest/deployment/deploy-model-locally/
https://censius.ai/blogs/dvc-vs-git-and-git-lfs-in-machine-learning-reproducibility
https://censius.ai/blogs/dvc-vs-git-and-git-lfs-in-machine-learning-reproducibility
https://docs.databricks.com/gcp/en/machine-learning/automl-hyperparam-tuning
https://docs.databricks.com/gcp/en/machine-learning/automl-hyperparam-tuning/
https://docs.databricks.com/gcp/en/machine-learning/automl-hyperparam-tuning/
https://wandb.ai/authors/RayTune-dcgan/reports/Ray-Tune-Distributed-Hyperparameter-Optimization-at-Scale--VmlldzoyMDEwNDY
https://wandb.ai/authors/RayTune-dcgan/reports/Ray-Tune-Distributed-Hyperparameter-Optimization-at-Scale--VmlldzoyMDEwNDY
https://docs.ray.io/en/latest/train/user-guides/hyperparameter-optimization.html
https://docs.ray.io/en/latest/tune/tutorials/tune-distributed.html
https://docs.databricks.com/aws/en/machine-learning/automl-hyperparam-tuning/optuna
https://docs.databricks.com/aws/en/machine-learning/automl-hyperparam-tuning/optuna
https://neon.tech/guides/optuna-hyperprameter-kubernetes

124.​ Machine Learning Operations Tools - Amazon SageMaker for MLOps - AWS,
accessed May 19, 2025, https://aws.amazon.com/sagemaker-ai/mlops/

https://aws.amazon.com/sagemaker-ai/mlops/

	Blueprint for a Modern High-Performance Machine Learning System
	I. Executive Summary: Blueprint for a Modern ML System
	II. Core Compute Infrastructure: GPU Clusters for Intensive ML
	A. GPU Selection and Server Configuration
	B. Intra-Node and Inter-Node GPU Connectivity (NVLink, NVSwitch, and alternatives)
	C. Cluster Management and Orchestration (Kubernetes, Slurm, Ray – selection criteria)

	III. High-Performance Networking Fabric: The Data Superhighway
	A. Defining Network Requirements for Large-Scale ML (Bandwidth, Latency, Losslessness, Jitter)
	B. Key Networking Technologies: Ethernet with RoCE v2, InfiniBand, and the emerging Ultra Ethernet Consortium (UEC)
	C. Network Topologies for Scalability and Performance (e.g., Fat-Tree, Clos, Dragonfly)

	IV. Scalable and Tiered Storage Architecture for ML Data Lifecycle
	A. Overall Storage Strategy: Tiers (Hot, Warm, Cold) and Data Placement
	B. High-Performance File Systems for Training Data (e.g., Lustre, BeeGFS, IBM Spectrum Scale)
	C. Object Storage for Raw Datasets, Archives, and Large Artifacts (e.g., S3-compatible with caching layers like Alluxio/JuiceFS)
	D. Specialized Storage

	V. Data Ingestion and Preprocessing Pipelines at Scale
	A. Ingesting Diverse Data Sources (e.g., Apache Spark, Kafka for streaming)
	B. Distributed Data Preprocessing Frameworks (e.g., Ray Data, Dask)

	VI. Optimizing Data Flow to GPUs: Leveraging GPUDirect Storage
	A. NVIDIA GPUDirect Storage (GDS) Architecture and Benefits (Reduced CPU overhead, lower latency)
	B. The cuFile API: Enabling Direct Storage-to-GPU Transfers
	C. GDS Integration with Parallel File Systems (e.g., Lustre with GDS, IBM Spectrum Scale with GDS)
	D. GDS in ML Frameworks: PyTorch (DALI, KvikIO) and TensorFlow (DALI)
	E. Best Practices for Staging Preprocessed Data for GDS Access

	VII. MLOps: Ensuring Reproducibility, Efficiency, and Governance
	A. Experiment Tracking and Artifact Management (e.g., MLflow, Kubeflow, DVC – backend/artifact store choices)
	B. Model Versioning Strategies for Large Models and Datasets (e.g., MLflow Model Registry, DVC with remote storage)
	C. Distributed Hyperparameter Optimization (e.g., Ray Tune, Optuna – data access patterns)
	D. Considerations for Model Serving (e.g., KServe, Triton with MLflow integration)

	VIII. System Integration: Connecting the Components for a Cohesive ML Platform
	A. Overview of Component Interactions (Visualized for Mermaid)
	B. Example Technology Stack and Configuration Notes (Illustrative choices for each layer)

	IX. Conclusion and Future Outlook
	Works cited

