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I. Executive Summary: Blueprint for a Modern ML System 

The design of a modern, large-scale Machine Learning (ML) system 
demands a holistic approach, where compute, networking, and 
storage are not merely individual components but deeply 
interconnected elements working in synergy. Achieving optimal 
performance, scalability, and efficiency for demanding ML workloads 
hinges on this integrated design philosophy. This report outlines a 
blueprint for such a system, emphasizing key technology choices 
that address the current and emerging needs of advanced AI 
applications. These choices include high-performance Ethernet with 
RDMA over Converged Ethernet (RoCEv2) or InfiniBand for the 
network fabric, a tiered storage architecture featuring high-speed 
parallel file systems for active training data and scalable object 
storage for vast datasets, powerful GPU clusters equipped with 
advanced interconnects like NVIDIA NVLink, and a robust MLOps 
framework to ensure reproducibility and operational efficiency. 

The core challenge in contemporary ML systems extends beyond the 
raw power of individual components. While cutting-edge GPUs 
provide immense computational capability, their effective utilization 
is often constrained by the ability of the network to deliver data and 
the storage system to serve it at the required pace.1 Scalability, the 
ability to grow the system to handle larger models and datasets; 
reproducibility, the capacity to consistently replicate experimental 
results and model behavior; and efficiency, optimizing resource use 
and minimizing training times, are paramount design goals.3 

A critical understanding is that optimizing components in isolation 



yields suboptimal system-level outcomes. For instance, a 
state-of-the-art GPU cluster will remain underutilized if the network 
bandwidth is insufficient or if the storage Input/Output Operations 
Per Second (IOPS) create a bottleneck.5 This necessitates a design 
where budget allocation and engineering efforts are distributed 
across all critical subsystems—compute, network, and 
storage—rather than being disproportionately focused on a single 
area like GPU acquisition. Furthermore, the modern ML 
infrastructure is increasingly software-defined. Beyond the physical 
hardware, the selection of workload managers, MLOps tools, and 
data orchestration layers significantly shapes the system's 
capabilities, operational agility, and overall effectiveness.6 Building 
and operating such sophisticated systems requires a 
multidisciplinary team with expertise spanning hardware 
engineering, distributed software systems, and MLOps practices. 

II. Core Compute Infrastructure: GPU Clusters for Intensive ML 

The heart of any large-scale ML system is its compute infrastructure, 
predominantly comprising clusters of Graphics Processing Units 
(GPUs) tailored for the parallel processing demands of ML 
algorithms, particularly deep learning. 

A. GPU Selection and Server Configuration 

The selection of GPUs is a foundational decision, directly impacting 
the system's performance, cost, and ability to handle specific ML 
workloads. Leading GPU architectures for ML include NVIDIA's H100, 
H200, and the newer Blackwell series, alongside AMD's MI300X. Key 
evaluation criteria include raw compute power (measured in TFLOPS 
for various precisions like FP16, BF16, FP8, and INT8), on-chip 
memory capacity (High Bandwidth Memory - HBM), memory 



bandwidth, and power consumption (Thermal Design Power - TDP).10 

For instance, the NVIDIA H100 GPU offers 80GB of HBM2e or HBM3 
memory, utilizes PCIe Gen5 for host connectivity, and features 
configurable power management modes to balance performance 
and energy use.10 Cloud providers like Google Cloud offer A3 virtual 
machines equipped with NVIDIA H100 80GB GPUs.11 In comparison, 
the AMD MI300X boasts a significant 192GB of HBM3 memory, 
offering superior memory capacity and bandwidth over the H100 
80GB, making it particularly well-suited for training very large 
models that might otherwise require complex model parallelism 
strategies.12 Optimizing workloads on MI300X can involve specific 
configurations, such as adjusting gpu-memory-utilization, 
max-num-seqs for batching, and selecting appropriate data types 
(dtype) when using frameworks like vLLM.13 

Server configurations must be carefully matched to the chosen 
GPUs. This includes selecting between PCIe and SXM form factors 
(with SXM typically offering higher GPU-to-GPU bandwidth within a 
multi-GPU baseboard), appropriate CPUs (e.g., Intel Sapphire 
Rapids, AMD Epyc Genoa 6), sufficient system RAM, and robust 
power delivery and cooling systems within the server chassis to 
handle the high TDP of modern GPUs.14 

The trend towards increasingly large models, especially Large 
Language Models (LLMs), places GPU memory capacity and 
bandwidth at the forefront of selection criteria.6 GPUs with larger 
memory, like the AMD MI300X, can reduce the necessity for 
extensive model parallelism across numerous GPUs with smaller 
memory footprints. This simplification of distributed training setups 
can, in turn, lessen inter-node communication overhead and 



potentially improve the total cost of ownership (TCO) by allowing 
complex models to fit onto fewer nodes or even a single, powerful 
node. This shifts the design focus from solely raw TFLOPS to TFLOPS 
accessible per model parameter, a metric intrinsically linked to 
available GPU memory. 

While raw hardware specifications are crucial, the maturity and 
breadth of the supporting software ecosystem are equally important. 
NVIDIA's CUDA platform, along with its extensive suite of libraries 
(e.g., Magnum IO, NCCL, cuDNN, TensorRT 15), provides a highly 
developed environment for ML development and deployment. AMD 
is actively building its ROCm ecosystem and collaborating with 
communities like vLLM to enhance support.12 However, the 
established nature of NVIDIA's ecosystem often translates to a 
smoother development experience, wider framework compatibility, 
and more readily available pre-optimized solutions, which can 
accelerate time-to-solution and simplify troubleshooting in 
production environments. Thus, the GPU selection process involves a 
careful assessment of not just hardware capabilities but also the 
associated software stack and ecosystem support. 

Table 1: GPU Model Comparison for ML Workloads 

Feature NVIDIA 
H100 80GB 
(SXM5) 

NVIDIA 
H200 
141GB 
(SXM) 

AMD 
MI300X 
192GB 

NVIDIA 
Blackwell 
B200 
(Projected) 

Architecture Hopper Hopper CDNA 3 Blackwell 



FP16/BF16 
TFLOPS 

~1979 
(dense) 

~1979 
(dense) 

~1600-1900
+ 

Significantly 
Higher 

FP8 TFLOPS ~3958 
(dense) 

~3958 
(dense) 

~3200-380
0+ 

Significantly 
Higher 

HBM 
Capacity 

80 GB HBM3 141 GB 
HBM3e 

192 GB 
HBM3 

Up to 192GB 
HBM3e 

HBM 
Bandwidth 

3.35 TB/s 4.8 TB/s 5.3 TB/s Up to 8 TB/s 

Interconnect NVLink 4.0 
(18 links) 

NVLink 4.0 
(18 links) 

Infinity 
Fabric 

NVLink 5.0 
(18 links) 

Link 
Bandwidth 
(Total) 

900 GB/s 900 GB/s 896 GB/s 
(IFL) 

1.8 TB/s 

Power (TDP) Up to 700W Up to 
1000W 

750W Up to 
1200W 

Form Factor SXM5 SXM OAM SXM / Server 
Board 

Note: Blackwell B200 specifications are based on publicly 
announced information and may be subject to change. AMD MI300X 
TFLOPS can vary based on specific configurations and sparsity. 

B. Intra-Node and Inter-Node GPU Connectivity (NVLink, NVSwitch, and 



alternatives) 

For multi-GPU training, particularly distributed deep learning, 
high-speed, direct GPU-to-GPU communication is paramount to 
minimize latency and maximize bandwidth for operations like 
gradient synchronization and model parameter sharing. 

NVIDIA's NVLink technology is a key enabler here. The fifth 
generation of NVLink, featured in the Blackwell architecture, offers 
up to 1.8 TB/s of bidirectional bandwidth per GPU, facilitated by 18 
links each operating at 100 GB/s.17 This represents a twofold increase 
over the previous generation and is more than 14 times the 
bandwidth of PCIe Gen5.17 To scale this further, NVIDIA NVSwitch 
chips connect multiple NVLink interfaces, enabling all-to-all GPU 
communication at full NVLink speed, not only within a single server 
but also potentially between servers in a tightly coupled pod.17 For 
example, the NVSwitch 3 chip integrates 64 NVLink4 ports.18 NVIDIA 
has also productized this technology into physical NVLink Switches, 
which can connect multiple GPU servers to form an "NVLink 
Network," effectively creating a high-speed fabric dedicated to GPU 
communication across hosts.18 Platforms like the NVIDIA GB200 or 
GB300 NVL72 systems, which can link up to 72 GPUs, heavily rely on 
this advanced NVLink and NVSwitch infrastructure to function as a 
cohesive, powerful compute unit.17 AMD offers its Infinity Fabric and 
Infinity Links for inter-GPU communication within its own ecosystem, 
providing a competing solution for high-bandwidth connectivity, 
though detailed specifications for the latest generations were less 
prominent in the provided materials. 

NVIDIA's substantial investment in NVLink and NVSwitch technology 
has resulted in a highly integrated, high-performance ecosystem for 



multi-GPU servers and pods, such as their DGX, HGX, and the newer 
NVL72 systems.17 This provides a potent "scale-up" solution, allowing 
for extremely fast communication within a pod of GPUs before 
needing to "scale-out" over a traditional network fabric like Ethernet 
or InfiniBand. For certain model parallelism strategies (e.g., tensor or 
pipeline parallelism), this localized high-bandwidth, low-latency 
interconnect can be particularly advantageous, simplifying aspects 
of distributed training by making inter-GPU communication within 
the pod exceptionally efficient. The NVLink Switch, for example, can 
enable 130TB/s of GPU bandwidth in a single GB300 NVL72 system, 
supporting up to nine times the GPU count of a typical 8-GPU 
system for large model parallelism, effectively creating a 
"data-center-sized GPU".17 

This evolution is leading to the concept of "rack-scale GPUs." 
Technologies like the external NVLink Switch 18 are blurring the 
traditional boundaries between individual servers. They create larger, 
more cohesive computational units at the rack or multi-rack level, 
where up to 576 GPUs can be interconnected in a non-blocking 
fabric via NVLink.17 This has significant implications for network 
design within the AI cluster. For these tightly coupled GPU pods, the 
primary high-performance interconnect is NVLink, handling the most 
intense, fine-grained communication. The external network fabric, 
such as Ethernet or InfiniBand, then serves to connect these 
powerful "rack-scale GPU" pods to each other and to the storage 
infrastructure. This implies a hierarchical networking approach, with 
specialized networks for different communication patterns and 
distances. 

C. Cluster Management and Orchestration (Kubernetes, Slurm, Ray – selection 
criteria) 



Managing and orchestrating workloads across a large GPU cluster 
requires sophisticated software. Key players in this domain include 
Kubernetes, Slurm, and Ray, each with distinct strengths. 

●​ Kubernetes: Has become a de facto standard for container 
orchestration. It can manage GPU resources, scale applications, 
and offers features like node labeling for different GPU types 
and mechanisms for specifying GPU resource requests in pod 
definitions.6 Google Kubernetes Engine (GKE), for example, 
provides managed Kubernetes with GPU support, including 
features like time-sharing and Multi-Instance GPUs (MIG) for 
partitioning physical GPUs into smaller, isolated instances.19 
However, for specialized GenAI workloads involving complex job 
queuing and scheduling, Kubernetes often requires 
supplementary tools or operators.6 

●​ Slurm (Simple Linux Utility for Resource Management): A 
widely adopted workload manager in High-Performance 
Computing (HPC) environments, Slurm excels at automating task 
scheduling, managing batch processing queues, and optimizing 
cluster resource utilization.6 It manages GPUs as Generic 
Resources (GRES) and utilizes environment variables like 
CUDA_VISIBLE_DEVICES and CUDA_DEVICE_ORDER for GPU 
allocation and visibility.21 

●​ Ray: An open-source framework designed for scaling Python 
applications, particularly those in AI and ML.6 Ray provides a 
suite of libraries tailored for ML tasks, including Ray Train for 
distributed model training, Ray Tune for hyperparameter 
optimization, Ray Data for scalable data processing, and Ray 
Serve for model deployment.6 Ray can be deployed on various 
infrastructures, including on top of Spark clusters (as seen with 



Databricks 23) or in a more infrastructure-agnostic manner using 
Docker containers.22 

The selection of an orchestrator depends on several factors: the 
existing expertise within the team, the nature of the ML workloads 
(e.g., batch training, interactive development, model serving), 
integration with existing infrastructure, the desired level of 
abstraction from the underlying hardware, and compatibility with 
other MLOps tools. 

A notable trend is the convergence and specialization of these 
orchestration tools. While Kubernetes provides a robust foundational 
layer for container and resource management, specialized 
frameworks like Slurm (for HPC-style batch jobs) and Ray (for 
distributed Python/ML workloads) offer functionalities more finely 
tuned to specific ML tasks. Consequently, integrations such as 
Soperator (a Kubernetes operator for Slurm, enabling Slurm clusters 
to run on Kubernetes 6) or deploying Ray clusters on Kubernetes are 
becoming common. This layered approach allows organizations to 
leverage the general-purpose infrastructure management 
capabilities of Kubernetes while benefiting from the domain-specific 
scheduling features and rich ML ecosystems offered by tools like 
Slurm or Ray. 

The choice of orchestrator also has a direct bearing on the 
integration and workflow of the broader MLOps toolkit. For instance, 
Kubeflow, with its components like Kubeflow Pipelines, is inherently 
Kubernetes-native and designed for orchestrating ML workflows on 
Kubernetes.24 MLflow, on the other hand, offers greater flexibility, 
capable of integrating with various backend stores and artifact 
repositories, and can be used with different orchestrators.8 Ray 



comes with its own ecosystem of tools like Ray Tune and Ray Serve, 
which are naturally integrated within Ray applications.22 Therefore, 
the decision regarding the primary orchestrator is not merely about 
job execution but significantly shapes the entire MLOps landscape, 
influencing how experiments are tracked, data and models are 
versioned, and models are ultimately deployed. 

III. High-Performance Networking Fabric: The Data Superhighway 

The network fabric is the critical data superhighway connecting GPU 
clusters, storage systems, and preprocessing nodes. For large-scale 
ML, particularly distributed training, the network's characteristics 
directly impact overall system performance and efficiency. 

A. Defining Network Requirements for Large-Scale ML (Bandwidth, Latency, 
Losslessness, Jitter) 

Modern AI applications, especially those involving distributed 
training of large models, impose stringent requirements on the 
network.5 Key performance indicators include: 

●​ Bandwidth: The data transfer rate, typically ranging from 
100Gbps to 400Gbps, and evolving towards 800Gbps and 
beyond per link.5 High bandwidth is essential for moving large 
datasets from storage to compute nodes and for synchronizing 
large model parameters and gradients between GPUs during 
distributed training. 

●​ Latency: The delay in data transmission. Extremely low latency 
is crucial for synchronous operations in distributed training, such 
as the aggregation of gradients, where delays can cause GPUs 
to idle, significantly slowing down the training process. 
Technologies like RoCE v2 aim to reduce latency by enabling 
direct memory access and bypassing the operating system and 



CPU.27 InfiniBand is also renowned for its inherently low latency 
characteristics.28 

●​ Losslessness: The absence of packet loss during transmission. 
Packet loss leads to retransmissions, which can stall training 
computations and severely degrade performance. Lossless 
operation is typically achieved in Ethernet networks through 
mechanisms like Ethernet Flow Control or, more commonly for 
RoCE, Priority Flow Control (PFC) combined with Explicit 
Congestion Notification (ECN).29 Arista's EOS, for example, 
provides tools to achieve a highly reliable, lossless network.5 
InfiniBand, by contrast, employs a credit-based flow control 
mechanism that inherently ensures lossless communication 
between connected devices.29 

●​ Jitter: The variation in packet arrival times. Consistent and 
predictable packet delivery (low jitter) is important for 
maintaining stable performance in tightly synchronized 
distributed computations. The Ultra Ethernet Consortium (UEC) 
identifies low jitter as a key design goal for future AI networks.30 

Achieving a truly "lossless" network, especially for RoCEv2 
deployments, is a system-level challenge, not merely a feature of the 
switch hardware. It necessitates meticulous end-to-end 
configuration and tuning, encompassing NICs, switches, and 
sophisticated congestion control mechanisms.5 This complexity is a 
trade-off for leveraging the ubiquity and broader ecosystem of 
Ethernet. InfiniBand's credit-based flow control, in contrast, offers a 
more inherently lossless fabric. 

Furthermore, the role of the network is evolving beyond that of a 
passive data conduit. Emerging technologies like NVIDIA SHARP 
(Scalable Hierarchical Aggregation and Reduction Protocol), which 



can be integrated into NVSwitch chips 18 and is part of the Magnum 
IO software stack 16, enable "in-network computing." With SHARP, 
collective operations like reductions (summing gradients from 
multiple GPUs) can be performed within the network fabric itself as 
data transits. This offloads computation from the GPUs or CPUs, 
potentially significantly accelerating communication patterns 
common in distributed training. This trend positions the network as 
an active participant in the computation, making the switch more 
than just a data forwarder—it becomes an accelerator. 

B. Key Networking Technologies: Ethernet with RoCE v2, InfiniBand, and the 
emerging Ultra Ethernet Consortium (UEC) 

Several key technologies compete to provide the networking 
backbone for ML clusters: 

●​ Ethernet with RoCE v2 (RDMA over Converged Ethernet): 
This approach leverages standard Ethernet infrastructure, which 
is widely deployed and understood. RoCE v2 is a routable 
protocol, typically operating over UDP/IP on port 4791.29 It 
enables Remote Direct Memory Access (RDMA), allowing 
systems (e.g., storage servers and GPU nodes, or GPU nodes 
amongst themselves) to exchange data directly between their 
memories, bypassing the host CPU and operating system 
networking stack. This significantly reduces latency and CPU 
overhead.27 For example, Google Cloud's A3 and A4 VMs utilize 
RoCE v2 to achieve 1.6 Tbps to 3.2 Tbps of inter-node 
GPU-to-GPU traffic.27 Network vendors like Arista provide 
switches (e.g., their Etherlink portfolio) that support RoCE and 
the necessary features for building lossless Ethernet fabrics, 
such as PFC and ECN.5 

●​ InfiniBand: A high-throughput, very low-latency interconnect 



technology that has long been favored in HPC environments and 
has seen widespread adoption in large-scale AI clusters.28 
InfiniBand inherently supports RDMA and uses a credit-based 
flow control mechanism, which guarantees lossless 
communication without the complex configuration often 
required for lossless Ethernet.29 NVIDIA's Quantum-2 InfiniBand 
platform, for instance, offers switches with aggregate 
throughputs of 51.2 Tb/s and 400 Gb/s ports.32 Historically, 
InfiniBand switches have demonstrated lower port-to-port 
latencies compared to their Ethernet counterparts.29 As of early 
2024, a significant majority, around 90%, of AI system 
deployments were reported to be using InfiniBand.32 

●​ Ultra Ethernet Consortium (UEC): This is an industry initiative 
aimed at evolving and enhancing Ethernet specifically for the 
demands of AI and ML workloads.30 The UEC's goal is to deliver 
an Ethernet-based solution with improved characteristics in 
terms of low latency, high bandwidth, minimal jitter, and 
enhanced reliability. The proposed UEC specifications cover 
multiple layers, including a physical layer compatible with IEEE 
802.3 Ethernet, a link layer introducing Link Level Retry (LLR) for 
lossless transmission (potentially without relying on PFC), Packet 
Rate Improvement (PRI) through header compression, and an 
advanced transport layer featuring new congestion control 
mechanisms and support for out-of-order delivery.33 Companies 
like Arista are actively involved and are building products that 
will be compatible with UEC standards.5 

The choice between these technologies involves navigating a 
dynamic landscape. InfiniBand currently holds a strong position in AI 
clusters due to its mature RDMA implementation, inherently low 



latency, and proven lossless nature.32 However, Ethernet, augmented 
by RoCEv2 and the forthcoming UEC enhancements, is rapidly 
evolving to challenge this dominance. Ethernet offers the allure of 
leveraging a ubiquitous, well-understood technology base, 
potentially broader vendor choice, and potentially lower costs in 
some scenarios.5 Hyperscalers, for example, often prefer Ethernet 
due to its openness and ability to handle diverse workloads beyond 
just AI.32 NVIDIA itself is a proponent of "lossless Ethernet" through 
its Spectrum-X platform.32 The decision for a new ML cluster build 
becomes strategic: investing in the established performance and 
relative simplicity of InfiniBand or opting for the evolving 
Ethernet/UEC path, which promises future advancements within a 
more common data center fabric. 

Regardless of the specific fabric choice (InfiniBand or 
Ethernet/RoCEv2), RDMA capability is a fundamental and 
non-negotiable requirement for any high-performance ML network.27 
The ability to bypass CPU and OS overhead for data transfers 
between GPUs and between GPUs and storage is critical for 
achieving the efficiency and speed demanded by large-scale 
distributed training. 

Table 2: Networking Technology Comparison for ML Clusters 

 

Feature Ethernet + 
RoCEv2 

InfiniBand Ultra Ethernet 
(Projected) 

Typical 
Bandwidth/Port 

100G, 200G, 
400G, 800G+ 

100G (HDR100), 
200G (HDR), 

400G, 800G, 
1.6T+ 



400G (NDR), 
800G (XDR) 

Latency 
Characteristics 

Low (with 
RDMA), higher 
than InfiniBand 
typically 

Very Low Very Low (target 
similar/better 
than InfiniBand) 

Lossless 
Mechanism 

PFC, ECN, 
DCB/DCB-CX 
(complex 
configuration) 29 

Credit-based 
flow control 
(inherent) 29 

UEC Transport 
(e.g., LLR) 33 

RDMA Support Yes (RoCEv2) 27 Yes (Native) 28 Yes (Enhanced 
Ethernet RDMA) 

Ecosystem 
Maturity 

Very Mature 
(Ethernet), 
Growing (RoCE 
for AI) 

Mature (HPC & 
AI) 

Emerging 

Cost 
Considerations 

Potentially lower, 
wider vendor 
base 

Typically higher 
cost per port 

Aims for 
Ethernet 
cost-effectivene
ss 

Key AI/ML Use 
Cases 

General DC, 
AI/ML clusters, 
Hyperscalers 32 

Dedicated AI/ML 
clusters, HPC 32 

Future AI/ML 
clusters 

C. Network Topologies for Scalability and Performance (e.g., Fat-Tree, Clos, 
Dragonfly) 



The physical and logical arrangement of network switches and 
links—the network topology—is crucial for ensuring scalability, high 
performance, and fault tolerance in large GPU clusters. 

●​ Fat-Tree (and its common implementation, Spine-Leaf, a 
type of Clos network): This is the most commonly adopted 
topology for modern data centers and GPU clusters due to its 
excellent scalability, potential for non-blocking or low-blocking 
performance, and relatively simple routing.34 

○​ A two-tier Fat-Tree (Leaf-Spine) architecture is typically 
used for smaller to medium-sized clusters. In this setup, 
servers (leaf nodes) connect to a set of leaf switches. Each 
leaf switch then connects to every spine switch in the upper 
tier. This provides multiple paths and good aggregate 
bandwidth.34 

○​ For larger clusters, a three-tier Fat-Tree 
(Leaf-Spine-Core) architecture may be employed, adding 
another layer of core switches to interconnect multiple 
spine-leaf pods.34 

○​ The number of GPUs a Fat-Tree network can support in a 
non-blocking fashion is directly related to the port count 
(radix, P) of the switches used. For a two-tier non-blocking 
network where leaf switches use P/2 ports downwards to 
servers and P/2 ports upwards to spine switches, a maximum 
of P leaf switches can be supported, leading to a total of 
P×(P/2)=P2/2 server ports (assuming one port per 
server/GPU for simplicity).34 For example, using 40-port 
switches, a two-tier Fat-Tree can support up to 402/2=800 
GPU connections. With 128-port switches, this scales to 
1282/2=8192 GPUs.34 A three-tier non-blocking Fat-Tree can 



support up to P3/4 server ports.34 

○​ The Clos network, named after Charles Clos, is the general 
theoretical underpinning for such multi-stage switching 
networks.37 A key property is that a strictly non-blocking Clos 
network can be achieved if the number of middle-stage 
switches (m) is greater than or equal to 2n−1, where n is the 
number of inputs to each ingress switch.37 Spine-leaf 
architectures are practical implementations of Clos 
principles, designed to minimize the number of hops 
between any two endpoints, thus ensuring high-bandwidth 
and low-latency communication ideal for data centers and AI 
clusters.36 

●​ Dragonfly: This topology, popularized by Cray in their 
supercomputers (e.g., XC and EX series), employs a hierarchical 
structure of switch groups.38 Within each group (often 
corresponding to a cabinet or set of cabinets), switches are 
typically connected in an all-to-all manner. These groups are 
then interconnected, often with a reduced (tapered) number of 
links compared to the intra-group connectivity, forming a global 
network.38 Dragonfly topologies are designed to offer very high 
bisection bandwidth, which is a measure of the network's 
capacity for all-to-all communication, and can provide lower 
average latency compared to Fat-Trees for certain 
communication patterns, especially in very large systems.39 They 
are particularly effective for physically dense node 
configurations, as more connections can be made with shorter, 
less expensive cables within a group.38 However, Dragonfly 
networks can be more complex to design, cable, and manage 
than Fat-Trees, and their benefits might diminish if the physical 
density of nodes is low, requiring more optical connections.38 



The choice of topology involves a trade-off. For many enterprise and 
research AI clusters, a well-designed Fat-Tree/Clos network 
(typically spine-leaf) provides a good balance of predictable 
performance, scalability, and manageability.34 For extremely 
large-scale systems, such as those found in national 
supercomputing centers or at hyperscalers with workloads 
dominated by intense all-to-all communication, a Dragonfly topology 
might be considered for its potential advantages in bisection 
bandwidth, though at the cost of increased complexity.38 

A critical factor influencing the scale and cost-effectiveness of any 
chosen topology is the radix (number of ports) of the network 
switches. Higher-radix switches allow for the construction of larger 
non-blocking or low-blocking fabrics with fewer switching layers.34 
For example, as shown by the formulas for Fat-Tree capacity, a 
switch with 64 ports can support significantly more endpoints in a 
two-tier non-blocking fabric than a 32-port switch, potentially 
obviating the need for a more complex and costly three-tier 
topology for a given cluster size. The availability of very high-radix 
spine switches, like the Arista 7800R4 AI Spine with 576 ports of 
800G 5, enables the creation of very large, efficient single-switch 
clusters (for smaller deployments) or forms the core of massive 
multi-tier networks. Investing in higher-radix switches can, therefore, 
simplify network design, reduce the number of hops, decrease 
overall latency, and potentially lower the total cost of the network 
infrastructure. 

IV. Scalable and Tiered Storage Architecture for ML Data 
Lifecycle 

Machine learning systems generate and consume vast quantities of 



data throughout their lifecycle, from raw data ingestion to model 
training, checkpointing, and artifact archiving. An effective storage 
architecture must balance performance, capacity, and cost, typically 
through a tiered approach.40 Key characteristics for ML storage 
include scalability to handle growing data volumes, high availability 
to ensure uninterrupted access, robust security mechanisms, and 
performance tailored to different stages of the ML pipeline, 
encompassing both high throughput for large sequential 
reads/writes and low latency for metadata operations and small 
random accesses.1 

A. Overall Storage Strategy: Tiers (Hot, Warm, Cold) and Data Placement 

A multi-tiered storage strategy is essential for managing the diverse 
requirements of ML workloads: 

●​ Hot Tier: This tier houses data requiring the highest 
performance, such as active training datasets, frequently 
accessed model checkpoints, and temporary scratch space. 
Technologies typically include local NVMe SSDs on compute 
nodes or high-performance parallel file systems. The primary 
focus is on minimizing latency and maximizing throughput to 
keep GPUs fed with data.1 

●​ Warm Tier: This tier provides scalable storage for data that is 
accessed less frequently but still needs to be readily available. 
Examples include larger, less active portions of training datasets, 
archived model artifacts, and historical experiment data. 
Solutions might include general-purpose distributed file systems 
or object storage systems, often augmented with caching layers 
to improve access times. This tier balances performance with 
cost-effectiveness. 

●​ Cold Tier: This is the most cost-effective tier, designed for 



long-term archival of raw data, older model versions, logs, and 
other data that is rarely accessed. Cloud-based archival 
services like Amazon S3 Glacier or Azure Archive Storage are 
common choices. 

Data placement across these tiers should ideally be dynamic and 
automated. As dataset sizes explode into petabytes 6, manual 
management becomes infeasible. Intelligent tiering, driven by 
policies based on access frequency, last modification time, data size, 
or even predictive models using machine learning itself, is crucial for 
ensuring that data resides on the most appropriate storage class.40 
This optimizes both performance (by keeping active data on fast 
tiers) and cost (by moving inactive data to cheaper tiers). Such 
automated tiering is becoming a key feature of modern storage 
solutions designed for large-scale data environments. 

The storage architecture must support the entire data lifecycle 
seamlessly. This includes the initial ingestion of raw data, 
preprocessing and transformation stages, the iterative process of 
model training with frequent checkpointing, storage of the final 
trained model artifacts, and eventual archival of data and models. 
Each of these stages imposes different I/O patterns and 
performance demands on the storage system.1 For example, raw 
data might initially land on scalable object storage 1, preprocessing 
might leverage a distributed file system or local scratch space 42, 
training requires high, sustained throughput from a parallel file 
system 44, model checkpoints need fast write capabilities 46, and 
model artifacts require versioned and easily accessible storage.8 This 
implies that the storage architecture is not a monolithic entity but 
rather a collection of specialized systems managed cohesively to 
serve the end-to-end ML workflow. 



B. High-Performance File Systems for Training Data (e.g., Lustre, BeeGFS, IBM 
Spectrum Scale) 

For the hot tier, particularly for feeding large datasets to GPU 
clusters during training, parallel file systems are indispensable. 
These systems are architected to provide high-throughput, 
low-latency, and highly concurrent access to massive datasets, 
distributing data and I/O operations across multiple storage nodes 
and servers.1 

●​ Lustre: A widely deployed open-source parallel file system, 
particularly prevalent in HPC and increasingly in large-scale LLM 
training environments. Lustre can scale to petabytes of capacity 
and deliver aggregate throughput in the terabytes per second 
range.48 Managed cloud offerings, such as Google Cloud 
Managed Lustre (based on DDN EXAScaler technology), provide 
performance tiers like 1000 MB/s per Terabyte (TiB) of 
provisioned capacity.44 Amazon FSx for Lustre is another popular 
managed service, which notably supports integration with 
Elastic Fabric Adapter (EFA) and NVIDIA GPUDirect Storage 
(GDS). This integration allows FSx for Lustre to deliver up to 
1200 Gbps of throughput per client instance to compatible EC2 
GPU instances, significantly accelerating data access for 
training.49 

●​ BeeGFS: An open-source parallel file system known for its ease 
of deployment and linear scalability in both performance and 
capacity.51 It is well-suited for ML and AI workloads that demand 
high data throughput. A notable deployment at UCSB 
demonstrated over 13 GB/s of performance.51 BeeGFS also offers 
a feature called BeeOND (BeeGFS On Demand), which allows for 
the creation of temporary, high-performance file system 



instances on the local SSDs of compute nodes, serving as a 
burst buffer for I/O-intensive jobs.51 

●​ IBM Spectrum Scale (formerly GPFS): A robust, 
software-defined storage solution providing both file and object 
access through its massively parallel file system.45 Spectrum 
Scale is designed for high-performance workloads and supports 
NVIDIA GPUDirect Storage, enabling a direct data path between 
GPU memory and storage over InfiniBand or RoCE networks. 
This direct path allows data to be read from or written directly to 
an NSD (Network Shared Disk) server's pagepool and 
transferred to the GPU buffer of client nodes via RDMA, 
bypassing the CPU.45 It is used in demanding environments like 
the IBM Vela AI supercomputer and can scale to thousands of 
nodes.45 

A critical feature for modern parallel file systems serving ML training 
workloads is their integration with NVIDIA GPUDirect Storage 
(GDS).56 The ability of Lustre 49, IBM Spectrum Scale 54, and other 
parallel file systems 58 to facilitate direct data transfers to GPU 
memory significantly reduces CPU overhead and data access 
latency, which is becoming a standard requirement for achieving 
optimal training performance. This capability heavily influences the 
selection of a parallel file system, placing pressure on vendors to 
offer robust GDS implementations. 

The choice of a specific parallel file system can also be influenced by 
factors such as cloud provider offerings and existing institutional 
expertise. Managed services like Google Cloud Managed Lustre 44 or 
AWS FSx for Lustre 49 significantly lower the operational burden of 
deploying and maintaining these complex systems, making them 
attractive for cloud-native ML initiatives. Conversely, organizations 



with established HPC infrastructure may already possess deep 
expertise in Lustre, BeeGFS, or Spectrum Scale, guiding their 
choices for new ML cluster deployments based on existing skill sets, 
vendor relationships, and specific performance or feature 
requirements. Thus, the "best" parallel file system is 
context-dependent. 

Table 3: Parallel File System Comparison for ML Training 

 

Feature Lustre BeeGFS IBM Spectrum 
Scale (GPFS) 

Architecture 
Highlights 

Distributed 
metadata (MDS) 
& object storage 
(OSS) servers 48 

Distributed 
metadata & 
storage servers; 
client-side 
striping 51 

Shared-disk 
cluster file 
system; NSDs; 
File & Object 
access 45 

Typical 
Throughput 

TBs/sec 
(aggregate) 48; 
1000 MB/s/TiB 
(managed 
services) 44 

Tens of GBs/sec 
to TBs/sec 
(aggregate) 51 

TBs/sec 
(aggregate with 
multiple nodes) 
53 

Latency 
Characteristics 

Low for large 
I/O; metadata 
can be a 
bottleneck if not 
scaled 

Low latency, 
good for mixed 
I/O 

Low latency, 
optimized for 
parallel I/O 



Scalability 
(Capacity/Nodes
) 

Petabytes; 
thousands of 
clients 48 

Petabytes; 
thousands of 
nodes 51 

Exabytes; 
thousands of 
nodes 53 

GPUDirect 
Storage Support 

Yes (e.g., AWS 
FSx for Lustre 
with EFA/GDS 49) 

Yes (via 
GDS-compatible 
underlying block 
devices & client 
integration) 

Yes (Direct 
RDMA from NSD 
server pagepool 
to GPU buffer) 54 

Key ML/HPC Use 
Cases 

LLM Training, 
HPC simulations, 
Genomics 48 

AI/ML, Deep 
Learning, 
Lifesciences, 
HPC 51 

AI, HPC, 
Analytics, Global 
Data Platforms 45 

Management 
Model 

Open Source; 
Managed Cloud 
Services (AWS, 
GCP, Oracle) 44 

Open Source; 
Commercial 
Support 
Available 51 

Commercial 
Software; 
Appliance 
options (Storage 
Scale System) 53 

C. Object Storage for Raw Datasets, Archives, and Large Artifacts (e.g., 
S3-compatible with caching layers like Alluxio/JuiceFS) 

Object storage systems, such as Amazon S3, Azure Blob Storage, 
Google Cloud Storage, and S3-compatible on-premises solutions 
like MinIO, have become the cornerstone for storing vast quantities 
of unstructured data in ML environments.1 Their inherent scalability 
(virtually unlimited capacity), durability, and cost-effectiveness make 
them ideal for building data lakes that house raw training datasets, 
intermediate processed data, large model artifacts, and long-term 
archives.60 The S3 API has emerged as the de-facto industry 



standard for object storage interaction.60 

While object storage excels as a primary data lake foundation due to 
its scalability and cost profile 61, its native performance 
characteristics (particularly latency and sometimes throughput for 
highly concurrent access patterns) are often insufficient for direct, 
high-performance feeding of GPUs during model training.62 This 
performance gap has led to the widespread adoption of caching and 
data orchestration layers that sit between the object store and the 
compute clusters. These layers bring data closer to the compute 
resources, accelerate access, and can provide more familiar file 
system semantics. 

●​ Alluxio: An open-source data orchestration platform that 
functions as a distributed caching layer. It intelligently manages 
data across various storage tiers, including memory, SSDs, and 
HDDs, within the compute cluster or on adjacent nodes.62 Alluxio 
can connect to underlying persistent storage systems like 
Amazon S3, GCS, or HDFS. For ML workloads using frameworks 
like Spark or Ray, Alluxio caches frequently accessed data, 
significantly improving I/O throughput and reducing the need for 
repeated access to remote object stores.63 Its newer DORA 
(Decentralized Object Repository Architecture) utilizes 
consistent hashing for distributing both cached data and 
metadata lookups across worker nodes, enhancing scalability 
and eliminating single points of failure.65 Alluxio can expose 
cached data via a FUSE interface, presenting it as a local folder 
to applications.65 

●​ JuiceFS: A cloud-native distributed file system that leverages 
object storage (like S3) as its backend for data persistence and 
employs a separate, pluggable metadata engine (options include 



Redis, TiKV, or a proprietary distributed engine for the Enterprise 
Edition).66 JuiceFS provides full POSIX compatibility, allowing 
applications to interact with it as if it were a local file system. It 
features multi-level caching (local client cache, distributed 
cache in Enterprise Edition) to accelerate data access and can 
manage hundreds of billions of files within a single namespace, 
making it suitable for very large AI datasets.66 

The provision of POSIX-compliant file system interfaces by these 
caching layers (JuiceFS natively, Alluxio via FUSE) is a crucial 
feature.65 Many existing ML tools, libraries, and even deep learning 
frameworks are built with the expectation of interacting with data 
through standard file system APIs. These layers abstract the 
underlying object storage, making it transparent to the applications 
and significantly reducing the engineering effort required to adapt 
ML workloads to use object storage as their primary data source. 
This creates a practical two-tier active data strategy: the object 
store serves as the durable and scalable "source of truth," while a 
faster caching layer provides high-performance access for active 
training and data processing workloads. 

D. Specialized Storage 

Beyond broad categories like parallel file systems and object 
storage, specific use cases within an ML system often benefit from 
specialized storage solutions. 

1. NFS for Model Artifacts and Checkpoints (with performance 
considerations) 

Network File System (NFS) is a mature and widely used protocol for 
sharing files across a network. In ML systems, it often serves as a 



convenient solution for storing model artifacts (trained model files, 
configurations), experiment outputs, and shared home directories 
for users.42 MLflow, for example, supports NFS as a backend for its 
artifact store.8 

While standard NFS implementations can be straightforward to set 
up, they can become a performance bottleneck if not adequately 
provisioned or optimized, especially when handling frequent writes 
of large checkpoint files or concurrent access from multiple nodes. 
To mitigate this, high-performance NFS solutions or specific 
configuration tuning is necessary. Optimizations can include using 
appropriate mount options (e.g., sync vs. async, though async 
carries risks of data loss on server crash), increasing the number of 
nfsd server threads, and leveraging NFS over RDMA (Remote Direct 
Memory Access) to reduce latency and CPU overhead on both the 
client and server.46 Commercial platforms like Silk are designed to 
provide high-performance NFS (and SMB) storage specifically for 
demanding AI training workloads, including optimized checkpointing 
capabilities, often in cloud environments like Azure.47 

The role of NFS in modern ML systems is thus shifting. While its 
ubiquity and ease of use make it suitable for MLOps tooling (like 
MLflow artifact stores) and general file sharing, it is generally not the 
preferred choice for the primary, high-throughput data path during 
active model training, where parallel file systems offer superior 
performance. However, for scenarios where extreme parallelism isn't 
the dominant requirement—such as storing model files that are read 
once at the start of an inference job or infrequently during 
development, or for managing smaller checkpoint files—a 
well-configured NFS server can be a practical solution. 



2. Local NVMe for Scratch Space and Temporary Data (e.g., 
direct use, ZFS LocalPV, RAM disks) 

Local Non-Volatile Memory Express (NVMe) SSDs, present on the 
compute nodes themselves, offer an extremely low-latency and 
high-throughput storage tier.42 This makes them ideal for use as 
scratch space for intermediate data generated during complex 
preprocessing or training computations, for burst buffering (where 
data is temporarily staged on local NVMe before being written to 
slower shared storage, as with BeeGFS On Demand 51), or for local 
caching of frequently accessed portions of a larger dataset. 

Managing local NVMe resources, especially in containerized 
environments like Kubernetes, requires specific approaches: 

●​ Direct host path mounts: Simplest method, but lacks 
Kubernetes PV integration and isolation.43 

●​ ZFS LocalPV: In Kubernetes environments, ZFS LocalPV can be 
used to aggregate multiple local NVMe disks on a node into a 
unified ZFS pool. This pool can then be used for dynamic 
provisioning of persistent volumes (PVs) with ZFS's advanced 
features like data integrity and snapshotting, providing 
high-performance, node-local storage for pods.43 

●​ BeeGFS On Demand (BeeOND): As mentioned, this BeeGFS 
feature can create temporary parallel file system instances using 
the local SSDs of compute nodes, offering a high-performance 
scratch space on a per-job basis.51 

For scenarios demanding the absolute highest I/O performance for 
very temporary data, and where sufficient system RAM is available, 
RAM disks can be employed.69 A RAM disk uses a portion of the 
system's main memory to emulate a block device. Since RAM is 



orders of magnitude faster than even NVMe SSDs, this provides 
unparalleled speed for transient files. However, data stored on a 
RAM disk is volatile and will be lost upon system reboot or power 
loss.70 Using RAM disks for temporary files can also help extend the 
lifespan of SSDs by reducing the number of write cycles they 
endure.70 

Leveraging fast local NVMe for transient data, shuffle operations, or 
as a cache for frequently accessed data segments is a critical 
component of a tiered storage strategy. It complements slower, 
shared storage systems by offloading I/O-intensive operations that 
benefit from the lowest possible latency, thereby accelerating 
specific stages of ML pipelines. 

3. Metadata Storage (e.g., XFS, ext4 for MLOps tools) 

MLOps tools and other system components generate and manage 
significant amounts of metadata. This can include experiment 
parameters, metrics, run information, artifact locations tracked by 
tools like MLflow (if using a file-based backend store 26), or the small 
.dvc files used by Data Version Control. The choice of file system for 
storing this metadata can impact the performance and reliability of 
these tools. 

●​ XFS: A high-performance journaling file system designed for 
scalability and handling large files and parallel I/O operations 
efficiently. It can scale to exabytes of data and is well-suited for 
servers that store large individual files or need to handle many 
simultaneous I/O requests.72 Its journaling capabilities ensure 
data integrity in case of system crashes. 

●​ Ext4 (Fourth Extended Filesystem): A widely used, stable, and 
general-purpose journaling file system for Linux. It performs well 



with smaller files and offers robust security features, including 
support for extended attributes and access control lists.72 

The choice between XFS and ext4 for metadata storage depends on 
the specific I/O patterns of the MLOps tools and the nature of the 
metadata itself. If the metadata consists of many small files with 
frequent updates, ext4 might offer better performance for those 
specific operations. If the MLOps system involves storing larger log 
files or other substantial metadata artifacts, XFS's strengths in 
handling large files might be more beneficial. However, it's important 
to note that for scalable MLOps deployments, particularly with tools 
like MLflow, database-backed stores (e.g., PostgreSQL, MySQL) are 
generally recommended over file-based stores for metadata 
management due to better concurrency, queryability, and overall 
performance at scale.71 The consideration of XFS vs. ext4 is more 
pertinent if a file-based backend is deliberately chosen, perhaps for 
simplicity in smaller or development setups. 

V. Data Ingestion and Preprocessing Pipelines at Scale 

The journey of data into an ML system, from raw sources through 
preprocessing to readiness for model training, is a critical phase that 
significantly influences overall pipeline efficiency and model quality. 

A. Ingesting Diverse Data Sources (e.g., Apache Spark, Kafka for streaming) 

Modern ML systems often need to ingest data from a multitude of 
sources, which can include databases, data warehouses, streaming 
platforms, APIs, and flat files. Efficient and scalable ingestion 
mechanisms are therefore essential. 

●​ Apache Spark: A powerful open-source distributed processing 
system widely used for big data workloads, including Extract, 



Transform, Load (ETL) operations.74 Spark's core engine provides 
distributed task scheduling and execution. Spark SQL allows for 
querying structured and semi-structured data using SQL-like 
syntax, while Spark Streaming (and its successor, Structured 
Streaming) enables the processing of real-time data streams.74 
Spark's ability to connect to diverse data sources and perform 
complex transformations in parallel makes it a common choice 
for the initial stages of data ingestion and preparation in ML 
pipelines. 

●​ Apache Kafka: A distributed event streaming platform designed 
for high-throughput, fault-tolerant, and scalable real-time data 
ingestion.77 Kafka acts as a durable message queue, allowing 
various source systems to publish data streams (events or 
messages) to topics. Downstream applications, such as Spark 
jobs or other stream processors, can then subscribe to these 
topics and consume the data at their own pace. Kafka is often 
deployed as a central data ingestion layer, decoupling data 
producers from data consumers and providing a resilient buffer 
for incoming data.77 Kafka Connect, a component of Kafka, 
provides a framework for scalably and reliably streaming data 
between Kafka and other systems like databases or file 
systems.77 

Data ingestion pipelines typically involve more than just moving data; 
they often include initial data cleaning, validation, transformation, 
and formatting to prepare the data for subsequent preprocessing 
and model training stages.78 

A robust architectural pattern involves decoupling the data ingestion 
mechanism from the subsequent processing and training systems. 
Using a dedicated ingestion layer like Apache Kafka provides such 



decoupling.77 Source systems can continuously publish data to Kafka 
topics, and downstream systems like Spark or Ray clusters can 
consume this data as needed. This architecture offers several 
advantages: it provides a buffer, absorbing bursts in data production; 
it allows data producers and consumers to evolve independently; 
and it enables multiple consumer applications to process the same 
data streams for different purposes. This loose coupling enhances 
the resilience and scalability of the overall data pipeline. 

Furthermore, the rise of Generative AI, particularly models 
employing Retrieval Augmented Generation (RAG), introduces new 
complexities to the data ingestion phase.79 For RAG systems, 
ingestion involves not only acquiring source documents but also 
chunking them into manageable pieces, generating vector 
embeddings for these chunks (often using another ML model), and 
storing these embeddings along with their metadata in a specialized 
vector store. This process, which includes NLP preprocessing and 
ML inference as part of the ingestion flow itself, represents an 
extension of traditional DataOps and requires specialized data 
pipelines.79 

B. Distributed Data Preprocessing Frameworks (e.g., Ray Data, Dask) 

Once raw data is ingested, it typically undergoes extensive 
preprocessing to transform it into a format suitable for ML model 
training. This can include operations like feature scaling, encoding 
categorical variables, handling missing values, text tokenization, 
image augmentation, and feature engineering. As dataset sizes grow, 
these preprocessing steps can become computationally intensive 
and, if not handled efficiently, can create a "CPU wall," bottlenecking 
the entire pipeline and leaving expensive GPUs idle during training.80 



Distributed data preprocessing frameworks are designed to address 
this challenge by scaling out these CPU-bound tasks across multiple 
nodes. 

●​ Ray Data: A scalable library within the Ray ecosystem 
specifically designed for data loading and preprocessing in ML 
workloads.81 Ray Data supports streaming execution, which is 
beneficial for handling datasets larger than available memory 
and for minimizing latency between preprocessing and training. 
It integrates seamlessly with popular ML training frameworks like 
PyTorch, TensorFlow, and Hugging Face Transformers, allowing 
preprocessed data to be fed directly into training loops.81 Ray 
Data can scale to petabyte-sized datasets and supports a wide 
variety of data transformations and input/output file formats, 
including Parquet, Lance, images, JSON, and CSV.81 It can also 
be used in conjunction with caching layers like Alluxio to further 
accelerate data access from remote storage.63 Several 
organizations, including Pinterest, DoorDash, and Instacart, 
utilize Ray Data for their ML data pipelines.81 

●​ Dask: A flexible parallel computing library for Python that 
enables scalable analytics. Dask provides Dask DataFrames and 
Dask Arrays, which are parallel collections that mimic the APIs of 
Pandas DataFrames and NumPy arrays, respectively, allowing 
users to work with datasets larger than memory.83 The dask-ml 
library includes scikit-learn-style transformers that can operate 
on these Dask collections in parallel, performing tasks like 
categorization (e.g., Categorizer for converting columns to 
categorical dtype) and encoding (e.g., DummyEncoder for 
one-hot encoding).83 Dask can be integrated into workflow 
management tools like Luigi for building end-to-end data 



pipelines 84 and can also run on Ray clusters via the dask_on_ray 
scheduler.85 

●​ Apache Spark: As discussed in the ingestion section, Spark is 
also a powerful framework for large-scale data preprocessing.74 
Its MLlib library provides a suite of ML algorithms and utilities, 
including various tools for feature extraction, transformation, 
and selection, all designed to operate in a distributed manner.74 

The "CPU wall" is a common scenario where the speed of data 
preprocessing on CPUs cannot keep pace with the consumption rate 
of fast GPUs, leading to GPU underutilization.75 Distributed 
CPU-based preprocessing frameworks like Ray Data, Dask, and 
Spark are therefore essential components of a modern ML system, 
ensuring that data can be prepared and delivered to the training 
workers at a rate that matches the GPUs' processing capabilities. 

Moreover, the emphasis on streaming execution, particularly in 
frameworks like Ray Data 81, is becoming increasingly important for 
handling extremely large datasets. Traditional batch ETL processes 
often involve processing entire datasets at each stage, which can be 
inefficient and require significant intermediate storage. Streaming 
execution, by contrast, allows for the overlapping of preprocessing 
and training stages: batches of data are preprocessed and 
immediately passed to the GPU workers. This reduces end-to-end 
latency, minimizes the need for storing massive intermediate 
datasets, and helps maintain high GPU utilization, especially when 
dealing with datasets that may not even fit into the distributed 
memory of the CPU cluster. 

VI. Optimizing Data Flow to GPUs: Leveraging GPUDirect Storage 

Minimizing the time it takes to move data from storage into GPU 



memory is crucial for maximizing the utilization of expensive GPU 
resources and accelerating ML training. NVIDIA GPUDirect Storage 
(GDS) is a key technology designed to address this challenge by 
creating a more direct and efficient data path. 

A. NVIDIA GPUDirect Storage (GDS) Architecture and Benefits (Reduced CPU 
overhead, lower latency) 

NVIDIA GPUDirect Storage enables a direct data path for Direct 
Memory Access (DMA) transfers between GPU memory and storage 
systems, whether local (e.g., NVMe SSDs) or remote (e.g., 
network-attached parallel file systems).57 This architecture 
fundamentally changes how GPUs access data by avoiding the 
traditional path where data is first copied from storage into CPU 
system memory (a "bounce buffer") and then from CPU memory to 
GPU memory. 

The primary benefits of GDS include 54: 

●​ Increased System Bandwidth: By eliminating the CPU memory 
bottleneck, GDS allows for higher data transfer rates between 
storage and GPUs. 

●​ Decreased Latency: Direct transfers reduce the number of 
steps and system calls involved, leading to lower data access 
latency. 

●​ Reduced CPU Utilization: Offloading data transfer operations 
from the CPU frees up CPU cycles for other computational tasks 
or allows for more power-efficient operation. 

GDS is a component of the NVIDIA Magnum IO SDK, a suite of 
software designed to optimize I/O for accelerated data centers.15 The 
GPUDirect family of technologies also includes GPUDirect RDMA (for 
direct GPU-to-NIC communication over a network) and GPUDirect 



Peer-to-Peer (for direct GPU-to-GPU communication within the 
same system or across NVLink).88 GDS is particularly beneficial in 
scenarios where I/O is a significant bottleneck and the CPU is heavily 
utilized in managing data transfers to and from its memory.54 Storage 
solutions like MinIO AIStor are integrating GDS support to reduce 
CPU consumption on GPU servers, thereby improving overall system 
efficiency.88 

By bypassing the CPU for data transfers directly to GPU memory, 
GDS effectively shifts the potential performance bottleneck from 
CPU-mediated I/O to the inherent limits of the storage system and 
the network fabric.54 This underscores the importance of pairing GDS 
with high-performance storage (like parallel file systems or fast 
NVMe arrays) and low-latency, high-bandwidth networks. If the CPU 
is no longer the chokepoint for data movement to the GPU, the 
speed at which the storage can source data and the network can 
transmit it become the new limiting factors. 

However, GDS is not a universally applicable solution for all I/O 
operations. It has specific requirements, such as the need for 
RDMA-capable networks when accessing remote storage, support 
from the underlying file system, and often the use of O_DIRECT file 
access mode to bypass the OS page cache.54 For certain types of 
I/O, such as operations on very small files, encrypted files, or 
compressed files where direct DMA is not feasible, GDS may fall 
back to a "compatibility mode." In this mode, data is transferred 
through a more traditional path, and the performance benefits of 
GDS are diminished or lost.54 Therefore, applications and data 
formats must often be GDS-aware or GDS-friendly to achieve the 
maximum performance improvements. 



B. The cuFile API: Enabling Direct Storage-to-GPU Transfers 

The primary interface for applications and frameworks to leverage 
GDS is the cuFile API.86 This API is part of the GDS software stack 
and provides a set of functions that allow CUDA applications to 
perform high-performance I/O directly between storage and GPU 
memory. 

Key functionalities of the cuFile API include 87: 

●​ File Registration: cuFileHandleRegister registers a file 
descriptor with the GDS driver, preparing it for direct I/O 
operations. 

●​ Direct Read/Write Operations: Functions like cuFileRead and 
cuFileWrite are analogous to POSIX pread and pwrite but are 
designed to operate with GPU memory buffers as the source or 
destination. These calls initiate DMA transfers directly between 
the storage device and the specified GPU memory region. 

●​ Stream Association: cuFile operations can be associated with 
CUDA streams using cuFileReadAsync and cuFileWriteAsync. 
This enables asynchronous I/O, where data transfers are ordered 
with respect to computations on a CUDA stream, allowing for 
effective overlapping of I/O and computation. 

●​ Batch Operations: APIs like cuFileReadBatch and 
cuFileWriteBatch allow for submitting multiple I/O requests in a 
single call, which can amortize overhead and improve efficiency 
for many small I/Os. 

The underlying mechanism often involves the nvidia-fs.ko kernel 
module, which orchestrates the direct I/O from DMA/RDMA-capable 
storage devices to the user-allocated GPU memory.89 If a direct path 
is not possible due to unsupported configurations or file types, the 



cuFile library can transparently fall back to a compatibility mode, 
typically involving staging data through CPU system memory, 
ensuring that the APIs can be used ubiquitously even if GDS 
acceleration is not available for a particular operation.87 

The cuFile API represents a significant shift towards GPU-centric I/O 
programming. It empowers developers to explicitly manage and 
optimize data transfers between storage and GPU memory, treating 
the GPU as a first-class participant in I/O operations rather than a 
passive recipient of data shuttled through the CPU. This explicit, 
proactive approach to data movement, as opposed to implicit 
requests triggered by page faults, is key to maximizing performance 
in GDS-enabled systems.87 This paradigm requires modifications in 
how I/O is handled within ML frameworks and custom applications to 
fully exploit GDS capabilities. 

C. GDS Integration with Parallel File Systems (e.g., Lustre with GDS, IBM Spectrum 
Scale with GDS) 

For GDS to be effective with the large, persistent datasets typically 
used in ML training, the underlying storage systems, particularly 
parallel file systems, must provide native integration. This involves 
kernel drivers and user-space libraries that can map file I/O 
operations to GDS direct transfers. 

●​ Lustre: Amazon FSx for Lustre is a prominent example of a 
managed Lustre service that supports GDS. When used with 
EFA-capable EC2 instances, FSx for Lustre can leverage GDS to 
enable direct data transfer between the file system and GPU 
memory, achieving very high client throughput (up to 1200 Gbps 
per client is reported).49 GDS support is often automatically 
enabled on EFA-enabled FSx for Lustre file systems when 



accessed from appropriately configured clients.50 

●​ IBM Spectrum Scale (GPFS): This parallel file system also 
provides robust GDS support. It allows data to be read or written 
directly from an NSD (Network Shared Disk) server's pagepool to 
the GPU buffers on client nodes via RDMA (over InfiniBand or 
RoCE).45 This requires the CUDA toolkit to be installed on the 
GDS clients and appropriate MOFED (Mellanox OpenFabrics 
Enterprise Distribution) drivers for the RDMA fabric. 

●​ Other File Systems: The nvidia-fs.ko driver, which is a core 
component of the GDS software stack, also lists support for 
other file systems such as XFS and EXT4 (when used in ordered 
mode on NVMe/NVMeOF devices), NFS over RDMA (with MOFED 
5.1 and above), and other RDMA-capable distributed file systems 
like DDN EXAScaler (which underlies some Lustre distributions), 
WekaFS, and VAST Data.89 Quantum's Myriad all-flash file system 
is also developing a client that leverages GDS technology.59 

This broad support across various high-performance file systems 
indicates that GDS is becoming a standard feature for storage 
solutions targeting AI/ML workloads. The file system itself must 
cooperate with the cuFile library and the GDS kernel components 
(like nvidia-fs.ko or the newer upstream kernel PCI P2PDMA 
infrastructure 87) to enable the direct data path. 

D. GDS in ML Frameworks: PyTorch (DALI, KvikIO) and TensorFlow (DALI) 

While GDS provides the low-level infrastructure for direct 
GPU-storage I/O, its benefits are most readily realized when 
integrated into high-level ML frameworks. This integration is still 
evolving. 

●​ PyTorch: 



○​ The default PyTorch Dataset and DataLoader classes 
primarily work with standard POSIX file APIs for data loading 
and checkpointing.91 

○​ To leverage GDS with PyTorch, specialized libraries are often 
required: 

■​ NVIDIA DALI (Data Loading Library): DALI is a library 
designed to accelerate data loading and preprocessing 
pipelines by offloading these tasks to the GPU. DALI can 
replace or augment built-in PyTorch DataLoaders and 
provides support for GDS for certain data formats (e.g., 
NumPy arrays) when reading from file-based storage.91 

■​ KvikIO: An open-source library from RAPIDS that 
provides Python and C++ bindings directly to the cuFile 
API, enabling GDS access. KvikIO can be integrated into 
PyTorch data loading pipelines to read/write data directly 
to/from GPU memory.91 

○​ There is active interest and feature requests within the 
PyTorch community for more first-class, native support for 
GDS within core components like IterableDataset and for 
checkpointing operations, aiming to simplify its adoption and 
broaden its applicability.95 

●​ TensorFlow: 
○​ TensorFlow's standard data input pipeline API is tf.data. 
○​ Similar to PyTorch, direct GDS integration into the core 

tf.data mechanisms is not as explicit. However, NVIDIA DALI 
also offers a TensorFlow plugin (nvidia-dali-tf-plugin) that 
allows DALI pipelines (which can include GDS-accelerated 
operations and GPU-based augmentations) to be seamlessly 
integrated as a data source for TensorFlow models.92 

○​ While older discussions touch upon GPU memory 



management and data prefetching in TensorFlow 97, and the 
DALI TensorFlow plugin API documentation exists 98, the 
specifics of tf.data directly using cuFile without an 
intermediary like DALI are less clear from the provided 
materials. 

The current state suggests that GDS adoption within major ML 
frameworks, while progressing, often relies on intermediary libraries 
like DALI or direct integration of cuFile wrappers like KvikIO. This 
adds a layer of complexity for ML engineers wishing to leverage GDS, 
as it may require deviating from standard framework data loaders or 
incorporating additional dependencies. NVIDIA DALI, in particular, is 
emerging as a key enabler, acting not only as a GPU-accelerated 
data augmentation library but also as a bridge to GDS capabilities 
for both PyTorch and TensorFlow.91 This makes DALI a critical 
component for building high-performance input pipelines that can 
fully exploit GDS. 

E. Best Practices for Staging Preprocessed Data for GDS Access 

To maximize the benefits of GPUDirect Storage, data should be 
appropriately prepared and "staged" on storage systems that are 
GDS-accessible and in a format conducive to direct transfers. 

1.​ Separate Preprocessing and Staging: Preprocessing tasks 
(cleaning, transformation, augmentation) are often 
CPU-intensive. It's a good practice to perform these using 
distributed CPU-driven systems like Apache Spark or Ray Data. 
The results of this preprocessing should then be written 
(staged) to a GDS-enabled, high-performance storage system 
(e.g., a parallel file system like Lustre or Spectrum Scale).88 

2.​ Use High-Performance GDS-Compatible Storage: Pair GDS 



with storage solutions that can match its throughput potential, 
such as NVMe SSDs, NVMe-over-Fabrics (NVMe-oF) arrays, or 
high-performance parallel file systems specifically validated for 
GDS compatibility.56 

3.​ Optimize Data Format and Layout: GDS, particularly when 
using O_DIRECT for bypassing the OS cache, performs best with 
large, contiguous, and memory-aligned I/O operations.87 This 
might influence how datasets are sharded, batched, or serialized 
during the preprocessing stage. Avoid many small, random I/O 
operations if possible. Uncompressed data often allows for the 
most direct GDS path. 

4.​ Leverage Tiered Storage: Implement a tiered storage strategy 
where the actively used, preprocessed training data resides on 
the GDS-enabled hot tier, while raw or less frequently accessed 
data is kept on slower, more cost-effective tiers.56 

5.​ Profile and Monitor I/O: Use profiling tools (like NVIDIA's gdsio 
utility 57 or other system monitoring tools) to understand I/O 
patterns, identify bottlenecks, and verify that GDS is being 
effectively utilized.56 Check for GDS compatibility mode 
fallbacks.54 

6.​ Integrate with DataLoader APIs: When using ML frameworks, 
ensure that the DataLoader APIs are configured to efficiently 
read batches of the staged, preprocessed data from the 
GDS-enabled storage in real-time to feed the GPUs.88 

The "staging" step is critical because GDS primarily accelerates the 
transfer of data that is already in a suitable state and location. It's 
not a magic bullet that makes any data source instantly fast for GPU 
access. The data must first be transformed and placed onto a 
storage system that GDS can efficiently interact with. This implies a 



deliberate multi-stage data pipeline where raw data is ingested, 
processed, and then explicitly staged for GDS-accelerated 
consumption by the training cluster. This careful preparation ensures 
that the high-speed path offered by GDS can be fully exploited. The 
preference of GDS for larger, contiguous file access patterns also 
suggests that data engineering practices upstream of model training 
should consider organizing data into larger chunks or files, favoring 
sequential access patterns to maximize GDS efficiency.87 

VII. MLOps: Ensuring Reproducibility, Efficiency, and Governance 

Machine Learning Operations (MLOps) encompasses the practices, 
tools, and cultural shifts required to build, deploy, and maintain ML 
systems reliably and efficiently at scale. For a modern ML system, a 
robust MLOps framework is indispensable for managing the 
complexities of the ML lifecycle, including experiment tracking, 
artifact management, model versioning, hyperparameter 
optimization, and model serving. Key goals are to ensure 
reproducibility, enhance collaboration, improve efficiency, and 
provide governance.25 

A. Experiment Tracking and Artifact Management (e.g., MLflow, Kubeflow, DVC – 
backend/artifact store choices) 

Tracking ML experiments—including parameters, metrics, code 
versions, and generated artifacts—is fundamental for reproducibility, 
debugging, and comparing different modeling approaches.24 

●​ MLflow: An open-source platform designed to manage the 
end-to-end ML lifecycle.25 

○​ MLflow Tracking: Allows logging of parameters, metrics, 
source code versions (if using MLflow Projects), and output 
artifacts for each experimental run. It provides a UI for 



visualizing and comparing runs.26 

○​ Backend Store: Persists the lightweight metadata 
associated with runs (e.g., run ID, parameters, metrics, tags). 
MLflow supports file-system-based backends (storing 
metadata in local files, typically within a ./mlruns directory) 
or, for more scalable and collaborative setups, 
database-backed stores such as PostgreSQL, MySQL, or 
SQLite.26 Using a database backend is a requirement for 
leveraging MLflow Model Registry features.71 

○​ Artifact Store: Stores the larger output files (artifacts) from 
runs, such as trained model files, data samples, or 
visualizations. MLflow supports various artifact stores 
including local file paths (e.g., on an NFS mount), Amazon 
S3, Azure Blob Storage, Google Cloud Storage, and HDFS.8 
S3-compatible object stores like MinIO or OVHcloud Object 
Storage can also be used.104 

○​ Implications for GDS with MLflow: If MLflow's artifact store is 
configured to use a GDS-enabled file system (e.g., Lustre or 
Spectrum Scale, potentially mounted via NFS or accessed 
through a custom URI handler if MLflow supports it), then 
artifacts written to or read from this store by GDS-aware 
applications could benefit. For instance, if a training job 
saves a large model checkpoint (an artifact) to a 
GDS-enabled Lustre file system, and a subsequent 
evaluation job (also GDS-aware) reads this checkpoint, the 
transfer could be accelerated. If the artifact store is an 
object store like S3, direct GDS benefits are less likely unless 
an S3 gateway with GDS support or a GDS-enabled caching 
layer (like Alluxio) is placed in front of the S3 bucket. MLflow 
primarily records the artifact_uri, pointing to the artifact's 



location. 
●​ Kubeflow Pipelines (KFP): A component of Kubeflow for 

building, deploying, and managing multi-step ML workflows 
(pipelines) on Kubernetes.24 

○​ Metadata Store: KFP stores metadata about pipeline runs, 
experiments, jobs, and individual pipeline step 
inputs/outputs. This is typically stored in a MySQL database 
deployed as part of Kubeflow.105 

○​ Artifact Store: KFP stores pipeline artifacts (which can 
include serialized data, models, metrics files, visualizations) 
in an object store. Supported backends include MinIO (often 
deployed by default with Kubeflow), Amazon S3, and Google 
Cloud Storage.105 The location for these artifacts is 
configured via the pipeline_root setting, which can be 
specified at the pipeline definition level or when submitting a 
run.107 

○​ Implications for GDS with KFP: Similar to MLflow, if the KFP 
pipeline_root points to an object store bucket that is, for 
example, an S3 gateway to a GDS-enabled parallel file 
system, or if KFP components within pipeline steps are 
written to be GDS-aware when interacting with a directly 
mounted GDS-enabled file system (if KFP allows such file:// 
URIs for artifacts), then GDS could accelerate artifact I/O. 
The directness of this integration depends on KFP's artifact 
handling mechanisms and whether pipeline components can 
leverage cuFile. 

●​ DVC (Data Version Control): An open-source tool that versions 
data and models by storing small metadata files (containing 
checksums and pointers) in Git, while the actual large data files 
are stored in a separate remote storage location.9 Supported 



remotes include S3, GCS, Azure Blob Storage, SSH servers, 
HDFS, and local file systems. 

○​ Implications for GDS with DVC: If DVC's configured remote 
storage is a GDS-enabled parallel file system, then dvc push 
would store data there, and dvc pull would retrieve it. If the 
local workspace where dvc pull materializes the data (or a 
local cache directory used by DVC) is on a GDS-enabled file 
system (e.g., local NVMe with GDS support, or a 
GDS-enabled scratch space), then subsequent training jobs 
that are GDS-aware could access this data with GDS 
acceleration. 

A common architectural pattern observed in tools like MLflow and 
Kubeflow is the decoupling of lightweight metadata storage from 
heavyweight artifact storage.8 Metadata, which includes parameters, 
metrics, and run information, benefits from the querying and 
transactional capabilities of a database. Artifacts, such as large 
model files or datasets, require scalable and often more 
cost-effective bulk storage solutions like object stores or parallel file 
systems. This separation allows for independent optimization of each 
storage type. 

The choice of artifact store has significant implications for the 
performance of downstream tasks. If preprocessed datasets or 
trained models, managed as artifacts by these MLOps tools, are 
stored on high-performance, GDS-enabled storage, subsequent 
pipeline steps like further training, model evaluation, or model 
serving can access these artifacts much more rapidly. In such 
scenarios, the artifact store transitions from being a passive 
repository to an active component of the high-performance data 
pipeline, with the artifact_uri (in MLflow) or pipeline_root (in 



Kubeflow) becoming a critical path for overall system performance. 

B. Model Versioning Strategies for Large Models and Datasets (e.g., MLflow Model 
Registry, DVC with remote storage) 

Effective versioning in ML requires tracking not only the model binary 
itself but also the training code, the specific dataset version used, 
hyperparameters, and the software environment to ensure full 
reproducibility.99 

●​ MLflow Model Registry: Provides a centralized repository for 
managing the lifecycle of MLflow Models.112 It allows users to: 

○​ Register models that have been logged during MLflow 
Tracking runs. 

○​ Version these registered models (e.g., "Version 1", "Version 
2"). 

○​ Assign stages to model versions (e.g., "Staging", 
"Production", "Archived"). 

○​ Use aliases (e.g., "champion") to point to specific model 
versions for easier reference in deployment. 

○​ Add tags and annotations for better organization and 
description. 

○​ Track model lineage, linking a model version back to the 
MLflow run that produced it (which contains information 
about parameters, metrics, and source code).114 Access to 
the Model Registry typically requires a database-backed 
backend store for MLflow.71 Models can be retrieved for 
deployment using URIs like 
models:/<model_name>/<model_version> or 
models:/<model_name>/<alias>.114 

●​ DVC (Data Version Control): As previously discussed, DVC 
versions large files, including models and datasets, by storing 



their checksums and metadata in Git, while the actual files 
reside in remote storage.9 The workflow involves using dvc add 
<model_file_or_data_dir> to track changes, dvc commit to record 
the new version's metadata, and git commit to version the .dvc 
files. dvc push and dvc pull are used to synchronize the actual 
large files with the configured remote storage. This approach 
tightly couples data and model versions with code versions in 
Git. 

●​ Git LFS (Large File Storage): An extension to Git designed to 
handle large binary files more efficiently than native Git.9 Git LFS 
replaces large files in the Git repository with small text pointer 
files. The actual large files are stored on a separate Git LFS 
server. While simpler than DVC for basic large file versioning 
alongside code, Git LFS is less specialized for the broader ML 
context of tracking experiments, metrics, or complex data 
dependencies. 

True model reproducibility extends beyond merely versioning the 
model file itself. It necessitates capturing the entire context of the 
model's creation: the exact version of the training code, the specific 
dataset snapshot used, all hyperparameters, and the complete 
software environment (libraries, drivers, OS).99 Tools like MLflow 
achieve this by linking registered models back to the comprehensive 
tracking data of the run that produced them. DVC achieves this by 
enabling the versioning of data, code, and pipeline definitions 
together within a Git repository. 

Furthermore, modern ML "models," especially complex ones like 
LLMs, are often not single files but collections of artifacts. These can 
include model weights, tokenizer files, configuration files, and even 
prompt templates. Versioning systems must be capable of handling 



these grouped artifacts cohesively as a single versionable "model 
unit." MLflow's concept of an "MLflow Model" (a directory containing 
the model files and a MLmodel descriptor file) inherently supports 
this.114 DVC can track entire directories, allowing a collection of 
related model files to be versioned together. 

C. Distributed Hyperparameter Optimization (e.g., Ray Tune, Optuna – data 
access patterns) 

Hyperparameter Optimization (HPO) is a critical step in maximizing 
model performance. Automating and scaling HPO can significantly 
accelerate the model development process. 

●​ Ray Tune: A distributed HPO library that is part of the Ray 
ecosystem.103 Ray Tune can launch multiple HPO trials 
concurrently across a Ray cluster, leveraging multiple nodes and 
GPUs.119 It integrates seamlessly with Ray Train, allowing each 
HPO trial to itself be a distributed training run.120 Ray Tune 
supports a variety of advanced search algorithms (e.g., ASHA, 
HyperBand, Population Based Training) and early stopping 
techniques to efficiently explore the hyperparameter space.103 
Trial states and checkpoints can be saved to persistent storage, 
including cloud object storage like S3, which is important for 
fault tolerance and resuming long-running HPO jobs.121 

●​ Optuna: A lightweight yet powerful HPO framework known for 
its define-by-run API and intelligent sampling strategies, such as 
the Tree-structured Parzen Estimator (TPE).103 Optuna can be 
parallelized for distributed HPO in several ways: using Joblib 
with a Spark backend for distribution across a Spark cluster 122, 
or by using a shared relational database (e.g., PostgreSQL) to 
store trial states and coordinating multiple Optuna worker 
processes, often orchestrated by Kubernetes.123 Optuna also 



integrates with MLflow for logging and tracking HPO trials.122 

During distributed HPO, each trial typically requires access to the 
training and validation datasets. If these datasets are large and 
stored on shared infrastructure (e.g., NFS, a parallel file system, or 
object storage with a caching layer), the storage system must be 
able to handle concurrent access from many trials without becoming 
a bottleneck. When Ray Tune is used with Ray Data, data can be 
streamed and preprocessed efficiently for each trial.82 If data resides 
in cloud object storage like S3, as is common with Ray Tune setups 
121, each trial or its group of distributed workers will fetch the data. In 
such scenarios, data caching layers (e.g., Alluxio, JuiceFS) or 
efficient data loading mechanisms within each trial become crucial 
to prevent HPO from being I/O-bound. 

The tight integration of HPO tools with distributed training 
frameworks, exemplified by Ray Tune and Ray Train 120, marks an 
important trend. HPO is evolving from simply launching many 
independent, single-node training jobs to orchestrating and 
managing multiple distributed training jobs as individual HPO trials. 
This requires the HPO system to have more sophisticated resource 
management capabilities, allocating resources (CPUs, GPUs) for 
each distributed trial, overseeing its lifecycle, and aggregating 
results. This close coupling enables more advanced HPO strategies 
to be applied effectively to complex, distributed ML models. 

D. Considerations for Model Serving (e.g., KServe, Triton with MLflow integration) 

Deploying trained and versioned models for inference is the final 
step in delivering value from the ML system. Serving platforms need 
to be scalable, reliable, and capable of loading specific model 
versions. 



●​ MLflow: Offers built-in capabilities for model deployment. The 
mlflow models serve command can deploy an MLflow Model as a 
local REST API endpoint, using FastAPI (default) or MLServer as 
the backend serving engine.115 The MLServer backend is 
particularly significant as it enables integration with 
Kubernetes-native serving frameworks like KServe (formerly 
KFServing) and Seldon Core, allowing MLflow Models to be 
deployed in scalable, production-grade Kubernetes 
environments.115 Models are typically retrieved from the MLflow 
Model Registry using URIs that specify the model name and 
version (e.g., models:/<model_name>/<model_version>) or an 
alias.114 

●​ KServe: A standard Model Inference Platform on Kubernetes, 
built for highly scalable and production-ready model serving. It 
is often used as the serving component within Kubeflow.24 
KServe supports features like serverless inference, 
scale-to-zero, canary deployments, and explainability. 

●​ NVIDIA Triton Inference Server: A high-performance inference 
server that supports models from various ML frameworks 
(TensorFlow, PyTorch, ONNX, TensorRT, etc.). Triton is designed 
for maximizing throughput and utilization on GPUs (and CPUs). It 
can be deployed standalone or integrated with platforms like 
KServe. 

For a seamless MLOps workflow, the model serving system must 
integrate with the model versioning and artifact management 
components. Typically, a CI/CD pipeline would trigger the 
deployment of a new model version to the serving environment once 
it has been validated and promoted (e.g., to "Production" stage in 
MLflow Model Registry). The serving platform then fetches the 



specified model artifacts from the artifact store (e.g., S3, NFS) based 
on the information provided by the model registry. 

The MLflow Model Registry plays a pivotal role in this CI/CD process 
for models.114 By versioning models and tracking their lifecycle 
stages, it provides the necessary control and traceability for 
automated deployment, A/B testing, and rollbacks. Serving tools are 
configured to pull specific, approved model versions from this 
registry, ensuring that the correct model is deployed into production. 

Furthermore, the standardization of model packaging is key for 
achieving interoperable and flexible model serving. MLflow's "MLflow 
Model" format, which packages a model along with its dependencies 
and a standardized descriptor file (MLmodel), aims to provide a 
common format that can be understood and deployed by various 
serving tools (MLflow's own server, MLServer, Amazon SageMaker, 
etc.).114 This reduces the friction involved in deploying models trained 
in different ML frameworks, as the serving infrastructure can rely on 
the standardized MLflow format rather than needing to intimately 
understand the specifics of every framework. 

VIII. System Integration: Connecting the Components for a 
Cohesive ML Platform 

A modern large-scale ML system is not a monolithic entity but a 
complex ecosystem of specialized sub-systems for compute, 
networking, storage, data processing, and MLOps. Effective 
integration of these components is crucial for building a cohesive 
and high-performing platform. 

A. Overview of Component Interactions (Visualized for Mermaid) 

The following outlines the primary data and control flows within the 



proposed ML system architecture. This description is intended to be 
suitable for generating a Mermaid diagram to visually represent 
these interactions. 

Data Flow: 

1.​ Raw Data Ingestion: 
○​ Source: External data sources (databases, APIs, logs, 

existing data lakes). 
○​ Destination: Warm Tier Object Storage (e.g., 

S3-compatible like MinIO). This serves as the primary, 
scalable data lake for raw and semi-processed data. 

○​ Mechanism: Ingestion pipelines, potentially using Kafka for 
streaming or batch tools for bulk loads. 

2.​ Data Preprocessing: 
○​ Source: Warm Tier Object Storage. 
○​ Processing: Distributed Preprocessing Cluster (e.g., 

Apache Spark, Ray Data, or Dask running on CPU-optimized 
Kubernetes nodes or dedicated CPU cluster). 

○​ Caching (Optional): If object storage is the source, a caching 
layer like Alluxio or JuiceFS can sit between object storage 
and the preprocessing cluster to accelerate reads. 

○​ Destination (Staged Data): Hot Tier Parallel File System 
(e.g., Lustre, IBM Spectrum Scale, BeeGFS), which should be 
GDS-enabled. Alternatively, for smaller datasets or specific 
Ray Data workflows, data might be directly streamed or 
cached within the Ray cluster's memory/local disk. 

○​ Mechanism: Preprocessing frameworks read from object 
storage (via cache if present), perform transformations, and 
write results to the parallel file system. 

3.​ Model Training Data Path: 



○​ Source: Hot Tier Parallel File System (or Alluxio/JuiceFS 
cache over object storage if GDS is integrated there). 

○​ Destination: GPU Memory within the GPU Training Cluster. 
○​ Mechanism: High-Performance Network Fabric (e.g., 

InfiniBand or Ethernet with RoCEv2). Data loaders within ML 
frameworks (e.g., PyTorch DataLoader, TensorFlow tf.data, 
potentially using NVIDIA DALI or KvikIO) read data from the 
parallel file system, leveraging NVIDIA GPUDirect Storage 
(GDS) and the cuFile API for direct DMA transfer into GPU 
memory, bypassing the CPU. 

4.​ Model Checkpointing: 
○​ Source: GPU Memory (model state during training). 
○​ Destination: Hot Tier Parallel File System or a 

High-Performance NFS Server (optimized for writes, 
possibly with RDMA). 

○​ Mechanism: Training script periodically saves model 
checkpoints. GDS can also accelerate writes if the target 
storage is GDS-enabled and the framework supports GDS 
for checkpointing. 

5.​ Model Artifacts & Experiment Logging: 
○​ Source: Training scripts, evaluation scripts. 
○​ Destination (Artifacts): MLOps Artifact Store (e.g., Object 

Storage, NFS, or even the parallel file system, as configured 
in MLflow/Kubeflow). 

○​ Destination (Metadata): MLOps Backend Store (e.g., 
PostgreSQL database for MLflow/Kubeflow). 

○​ Mechanism: MLOps tools (MLflow, Kubeflow Pipelines) log 
metrics, parameters to the backend store and save model 
files, visualizations, etc., to the artifact store. 



Control/Orchestration Flow: 

1.​ User/CI-CD System Interaction: 
○​ Interface: Git (for code, DVC metafiles), MLOps Platform 

UI/CLI (MLflow, Kubeflow). 
○​ Action: User commits code, triggers pipeline, launches 

experiment, promotes model. 
2.​ MLOps Platform Orchestration: 

○​ Component: MLOps Orchestrator (e.g., MLflow Projects, 
Kubeflow Pipelines, custom scripts invoking Ray/Slurm jobs 
via Kubernetes). 

○​ Action 1 (Preprocessing): Schedules and manages data 
preprocessing jobs on the Distributed Preprocessing Cluster. 

○​ Action 2 (Training): Schedules and manages model training 
jobs on the GPU Training Cluster (which itself is managed 
by a lower-level orchestrator like Kubernetes, Slurm, or Ray). 
Passes hyperparameters, data paths. 

○​ Action 3 (Tracking/Versioning): Interacts with MLOps 
Backend Store and Artifact Store to record experiment 
details and version models/data (e.g., via MLflow Tracking 
Server, MLflow Model Registry, DVC commands). 

3.​ GPU Cluster Workload Management: 
○​ Component: Cluster Manager (Kubernetes, Slurm, Ray). 
○​ Action: Allocates GPU and other resources to training jobs, 

manages container execution (if applicable), monitors job 
status. 

4.​ Model Serving Deployment: 
○​ Source: MLOps Model Registry (e.g., MLflow Model 

Registry). 
○​ Action: CI/CD pipeline or manual trigger initiates deployment 



of a specific model version. 
○​ Destination: Model Serving Platform (e.g., KServe, NVIDIA 

Triton Inference Server, running on Kubernetes or dedicated 
inference cluster). 

○​ Mechanism: Serving platform retrieves the specified model 
artifacts from the MLOps Artifact Store (location obtained 
from the Model Registry) and deploys the model as an 
inference endpoint. 

This interconnectedness highlights that the system is far more than 
the sum of its parts. No single technology or component dominates 
all aspects of the ML lifecycle. For instance, object storage is 
excellent for establishing a scalable raw data lake, but 
high-performance parallel file systems are indispensable for the 
demanding I/O patterns of model training. Similarly, CPU-based 
clusters are optimal for data preprocessing tasks, while GPU clusters 
are the workhorses for training deep learning models. This inherent 
specialization across different stages necessitates careful and 
robust integration between these sub-systems. 

Furthermore, network performance is not just a concern for 
GPU-to-GPU communication within the training cluster.5 It is equally 
critical at multiple other interfaces.88 The network link between the 
primary data lake (object storage) and the preprocessing cluster, the 
link from the preprocessing cluster to the staging storage (parallel 
file system), and finally, the fabric connecting the staging storage to 
the GPU training cluster—all these data paths must be adequately 
provisioned in terms of bandwidth and latency. A bottleneck in any of 
these segments can starve the GPUs and negate the benefits of a 
high-performance training cluster. 



B. Example Technology Stack and Configuration Notes (Illustrative choices for 
each layer) 

To provide a more concrete illustration, the following table outlines 
an example technology stack for a modern ML system, combining 
many of the components discussed. This is an illustrative example, 
and specific choices would depend on budget, scale, existing 
infrastructure, and team expertise. 

Table 4: Example ML System Technology Stack 

 

System Layer Specific Technology 
Choice 

Key Configuration 
Notes/Rationale 

GPU Compute Nodes Servers with 8x NVIDIA 
H200 141GB GPUs 

SXM form factor for 
high intra-node 
bandwidth via 
NVLink/NVSwitch. 
Paired with high-core 
count CPUs (e.g., AMD 
Epyc or Intel Xeon 
Scalable) and ample 
system RAM (e.g., 
1-2TB per node). 

GPU Cluster 
Interconnect 

NVIDIA Quantum-2 
InfiniBand (NDR 
400Gbps) or 800GbE 
Ethernet with RoCEv2 
(e.g., Arista 
7060X6/7800R4 series 
5) 

2-level Fat-Tree 
(Leaf-Spine) topology. 
Ensure RDMA is 
enabled. For RoCEv2: 
configure PFC, ECN for 
lossless operation; 
ensure consistent MTU 



across fabric. 

Cluster Orchestration Kubernetes (e.g., GKE, 
EKS, AKS, or on-prem) 
with Ray deployed on 
Kubernetes (Ray 
Operator) 

Kubernetes for base 
infrastructure 
management. Ray for 
distributed Python/ML 
workloads (Ray Train, 
Ray Tune, Ray Serve). 
GPU sharing (MIG) and 
node labeling in 
Kubernetes.7 

Storage - Hot Tier 
(Training Data) 

Lustre file system (e.g., 
managed cloud service 
like AWS FSx for Lustre 
49 or on-prem DDN 
EXAScaler) 

GDS-enabled for direct 
GPU access. 
High-throughput 
configuration (e.g., 
SSD-based). POSIX 
access for frameworks. 

Storage - Warm Tier 
(Raw Data Lake, 
Large Artifacts) 

S3-compatible Object 
Storage (e.g., MinIO, 
Ceph RGW, or cloud 
provider S3/GCS/Azure 
Blob) 

Highly scalable and 
durable. Cost-effective 
for large volumes. 

Storage - 
Caching/Orchestratio
n for Warm Tier 

Alluxio or JuiceFS Deployed between 
object storage and 
compute 
(preprocessing/training 
clusters). Provides 
POSIX access and 
distributed caching to 



accelerate reads from 
object storage.63 

Storage - Scratch 
(Node-Local) 

Local NVMe SSDs on 
GPU and CPU nodes 

Managed via ZFS 
LocalPV in Kubernetes 
for dynamic 
provisioning of scratch 
volumes.43 Used for 
temporary data, shuffle 
operations. 

Storage - MLOps 
Artifacts/Checkpoint
s (Alternative) 

High-Performance NFS 
Server (e.g., NetApp, 
Dell PowerScale, or 
custom build with NFS 
over RDMA 46) 

For MLflow artifact 
store if not using 
object storage directly. 
Optimized for mixed 
I/O, reliable for 
checkpoints. 

Data Ingestion Apache Kafka + 
Apache Spark (running 
on Kubernetes) 

Kafka for real-time 
stream ingestion and 
buffering.77 Spark for 
batch ETL from diverse 
sources and initial 
processing.74 

Data Preprocessing 
(Final Stage) 

Ray Data (running on 
Ray cluster within 
Kubernetes) 

For scalable, 
distributed 
preprocessing feeding 
directly into Ray Train. 
Leverages CPU nodes 
efficiently.81 



MLOps - Experiment 
Tracking & Model 
Registry 

MLflow Tracking Server Backend: Managed 
PostgreSQL 
database.71 Artifact 
Store: S3-compatible 
Object Storage (via 
Alluxio/JuiceFS if 
caching needed) or the 
dedicated NFS server.8 

MLOps - Data & 
Model Versioning 

DVC (Data Version 
Control) 

Integrated with Git. 
Remote storage for 
DVC cache pointing to 
the S3-compatible 
object store or parallel 
file system. 

MLOps - 
Hyperparameter 
Optimization 

Ray Tune Integrated with Ray 
Train. Leverages the 
Ray cluster for 
distributed trials. 
Checkpoints trials to 
shared storage (e.g., 
NFS or object store).121 

MLOps - Model 
Serving 

KServe on Kubernetes, 
with NVIDIA Triton 
Inference Server as the 
backend 

Models pulled from 
MLflow Model Registry. 
KServe for scalable, 
standardized 
deployment.115 

A hybrid orchestration model, using Kubernetes as the foundational 
platform with Ray deployed on top for ML-specific workloads, offers 



considerable flexibility. Kubernetes handles the underlying 
infrastructure provisioning, scaling, and management of 
containerized applications, including Ray clusters themselves (often 
via a Ray Kubernetes Operator). Ray then provides the specialized 
environment and libraries (Ray Train, Ray Tune, Ray Data, Ray Serve) 
tailored for distributed Python and machine learning tasks.6 For 
certain highly parallel, HPC-style training jobs, an orchestrator like 
Slurm might even be run on Kubernetes (e.g., via Soperator 6) to 
leverage its advanced batch scheduling capabilities. This layered 
approach combines the strengths of general-purpose container 
orchestration with domain-specific ML and HPC workload 
management. 

IX. Conclusion and Future Outlook 

The design of a modern, large-scale ML system is a multifaceted 
endeavor, requiring a delicate balance between raw component 
performance, system-level integration, and operational efficiency. 
The blueprint outlined in this report emphasizes several core 
principles: the synergistic performance of compute, network, and 
storage; the necessity of high-speed, low-latency networking with 
RDMA capabilities; a tiered and specialized storage architecture to 
cater to diverse data access patterns; optimized data paths directly 
to GPU memory via technologies like GPUDirect Storage; and a 
comprehensive MLOps framework to ensure reproducibility, 
governance, and agility throughout the ML lifecycle. Building such a 
system is undoubtedly complex, but it is a prerequisite for 
organizations aiming to stay at the cutting edge of AI research and 
deployment. 

Looking ahead, several trends are poised to further shape the 



evolution of ML systems: 

1.​ Deeper Integration of Compute, Network, and Storage: The 
lines between these traditionally distinct domains will continue 
to blur. Technologies like Data Processing Units (DPUs) that 
offload networking and storage tasks from CPUs, computational 
storage devices that perform processing directly on stored data, 
and increasingly intelligent network fabrics (as envisioned by the 
UEC and exemplified by NVIDIA SHARP 16) point towards a future 
where system components are more deeply aware of and 
integrated with each other. This tighter coupling aims to 
minimize data movement and process data closer to where it 
resides or where it is needed, further reducing latency and 
improving efficiency. 

2.​ Advancements in Hardware/Software Co-design: The 
development of AI-specific hardware (next-generation GPUs, 
custom ASICs) will increasingly be accompanied by co-designed 
software stacks (libraries, compilers, frameworks) to extract 
maximum performance.57 This co-design philosophy ensures 
that software can fully exploit unique hardware features, and 
hardware is architected with the needs of leading AI workloads 
in mind. 

3.​ More Intelligent and Automated MLOps: MLOps platforms will 
become more sophisticated, incorporating AI itself to automate 
tasks like optimal resource allocation, proactive anomaly 
detection in model performance, automated retraining triggers, 
and intelligent data tiering. The goal is to create self-optimizing 
and self-healing ML pipelines that require less manual 
intervention. 

4.​ Sustainability and Total Cost of Ownership (TCO) as 



Primary Design Drivers: As ML clusters scale to 
unprecedented sizes, their energy consumption and overall TCO 
are becoming critical concerns.10 Future designs will place a 
greater emphasis on power-efficient hardware components, 
energy-aware scheduling, optimized cooling solutions, and 
software techniques that maximize resource utilization to reduce 
idle power. The development of more heterogeneous compute 
environments, leveraging different types of accelerators for 
different tasks, may also contribute to better energy efficiency. 

The journey to build and operate these advanced ML systems 
requires continuous learning, adaptation, and a commitment to a 
holistic, integrated design approach. The principles and technologies 
discussed provide a robust foundation for architecting the ML 
infrastructure of tomorrow. 
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